
1

#1

Programming Language Programming Language

Design and ImplementationDesign and Implementation

Wes Weimer

TR 9:30-10:45

MEC 214

#2

Cunning Plan

• Who Are We?

– Wes, Pieter, Isabelle

• Administrivia

• What Is This Class About?

• Brief History Lesson

• Understanding a Program in Stages

#3

Your Host For The Semester

2

#4

Course Staff - TA
• Pieter Hooimeijer

• Email: ph4uph4uph4uph4u

• Isabelle Stanton

• ils9dils9dils9dils9d

#5

#6

Course Home Page

• google: virginia cs 415

• www.cs.virginia.edu/~cs415/

• Lectures slides are available before class

– You should still take notes!

• Assignments are listed

– also grading breakdown, regrade policies, etc.

• Use the class forum for all public questions

3

#7

Discussion Sections

• There will be two one-hour-long “structured
office hours” each week
– Hosted by the TAs

• We will not take attendance, but you are
encouraged to show up to one each week
– Notes posted on web

– For your benefit!

• Answer questions, go over lecture material,
help and hints on the homework and projects

• Fill out the time signup sheet

#8

#9

4

#10

Course Structure

• Course has theoretical and practical aspects
– Best of both worlds!

• Need both in programming languages!

• Reading = both

– Many external and optional readings

• Written assignments = theory
– Class hand-in, right before lecture, pass/fail

• Programming assignments = practice
– Electronic hand-in

• Strict deadlines

#11

Academic Honesty

• Don’t use work from uncited sources

– Including old code

• We use plagiarism detection software

PLAGIARISM

#12

The Course Project

• A big project: an Interpreter!

• … in five easy parts

• Start early!

5

#13

How are Languages Implemented?

• Two major strategies:
– Interpreters (take source code and run it)

– Compilers (translate source code, run result)

– Distinctions blurring (e.g., just-in-time compiler)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing
– Most implementations use compilers

#14

Don’t We Already Have Compilers?

#15

Dismal View Of Prog Languages

C++

Java
(or C#)

6

#16

(Short) History of High-Level

Languages

• 1953 IBM develops the 701 “Defense Calculator”
– 1952, US formally ends occupation of Japan

– 1954, Brown v. Board of Education of Topeka, Kansas

• All programming done in assembly

• Problem: Software costs exceeded hardware
costs!

• John Backus: “Speedcoding”
– An interpreter

– Ran 10-20 times slower than hand-written assembly

#17

FORTRAN I

• 1954 IBM develops the 704

• John Backus

– Idea: translate high-level code to assembly

– Many thought this impossible

• 1954-7 FORTRAN I project

• By 1958, >50% of all software is in FORTRAN

• Cut development time dramatically

– (2 weeks →→→→ 2 hours)

#18

FORTRAN I

• The first compiler

– Produced code almost as good as hand-written

– Huge impact on computer science

• Led to an enormous body of theoretical work

• Modern compilers preserve the outlines of

FORTRAN I

7

Q: TV (100 / 842)

•In this 1985-1992 ABC television

series, the gunless title

character Angus works for Pete

and the Phoenix Foundation and

makes heavy use of his Swiss

Army knife and duct tape.

#20

The Structure of an Interpreter

1. Lexical Analysis

2. Parsing

3. Semantic Analysis

4. Optimization (optional)

5. Run It!

The first 3, at least, can be understood by

analogy to how humans comprehend

English.

This is the class

programming project!

#21

Lexical Analysis

• First step: recognize words.

– Smallest unit above letters

This is a sentence.

• Note the

– Capital “T” (start of sentence symbol)

– Blank “ ” (word separator)

– Period “.” (end of sentence symbol)

8

#22

More Lexical Analysis

• Lexical analysis is not trivial. Consider:

How d’you break “this” up?

• Plus, programming languages are typically

more cryptic than English:

*p->f += -.12345e-6

#23

And More Lexical Analysis

• Lexical analyzer divides program text into

“words” or tokens

if x == y then z = 1; else z = 2;

• Broken up:

if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

#24

Parsing

• Once words are understood, the next step

is to understand sentence structure

• Parsing = Diagramming Sentences

– The diagram is a tree

9

#25

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

#26

Parsing Programs

• Parsing program expressions is the same

• Consider:

if x == y then z = 1; else z = 2;

• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

#27

Semantic Analysis

• Once sentence structure is understood, we

can try to understand “meaning”

– But meaning is too hard for compilers

• Compilers perform limited analysis to catch

inconsistencies: reject bad programs early!

• Some do more analysis to improve the

performance of the program

10

#28

Semantic Analysis in English

• Example:

Kara said Sharon left her sidearm at home.

What does “her” refer to? Kara or Sharon?

• Even worse:

Sharon said Sharon left her sidearm at home.

How many Sharons are there?

Which one left the sidearm?

#29

Semantic Analysis in Programming

• Programming

languages define

strict rules to avoid

such ambiguities

• This C++ code prints

“4”; the inner

definition is used

{

int Sydney = 3;

{

int Sydney = 4;

cout << Sydney;

}

} Scoping or

aliasing

problem.

#30

More Semantic Analysis

• Compilers perform many semantic checks

besides variable bindings

• Example:

Gregory House left her cane at home.

• A “type mismatch” between her and Gregory

House; we know they are different people

– Presumably Gregory House is male

11

#31

Optimization

• No strong counterpart in English, but akin to

editing

• Automatically modify programs so that they

– Run faster

– Use less memory

– In general, conserve some resource

• The project has no optimization component

#32

Code Generation

• Produces assembly code (usually)

– which is then assembled into executables by an

assembler

• A translation into another language

– Analogous to human translation

• We will not do codegen in this class

– Instead you will interpret the program directly!

#33

Issues

• Compiling and interpreting are almost this

simple, but there are many pitfalls.

• Example: How are erroneous programs

handled?

• Language design has big impact on compiler

– Determines what is easy and hard to compile

– Course theme: trade-offs in language design

12

#34

Languages Today

• The overall structure of almost every

compiler & interpreter follows our outline

• The proportions have changed since

FORTRAN

– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,

lexing and parsing are cheap

#35

Trends in Languages

• Optimization for speed is less interesting. But:
– scientific programs

– advanced processors (Digital Signal Processors,
advanced speculative architectures)

– Small devices where speed = longer battery life

• Ideas we’ll discuss are used for improving code
reliability:
– memory safety

– detecting concurrency errors (data races)

– type safety

– automatic memory management

– …

#36

Why Study Prog. Languages?

• Increase capacity of expression

– See what is possible

• Improve understanding of program behavior

– Know how things work “under the hood”

• Increase ability to learn new languages

• Learn to build a large and reliable system

• See many basic CS concepts at work

13

#37

What Will You Do In This Class?

• Reading (textbook, outside sources)

• Learn about different kinds of languages

– Imperative vs. Functional vs. Object-Oriented

– Static typing vs. Dynamic typing

– etc.

• Learn to program in different languages

– Python, Ruby, ML, “Cool” (= micro-Java)

• Write an interpreter!

#38

What Is This?

#39

The Rosetta Stone

• The first programming assignment involves

writing the same simple (50-75 line) program

in five languages

– Ruby, Python, OCaml, Cool and C

• PA0, due next Friday, requires you to write

the program in just one language (you pick)

• PA1, due one week later, requires all five
Long, long be my heart with such memories fill'd!
Like the vase in which roses have once been distill'd:
You may break, you may shatter the vase if you will,
But the scent of the roses will hang round it still.

- Thomas Moore (Irish poet, 1779-1852)

14

#40

Homework

• Scott Book, parts of Chapter 10 (for Tuesday)

• Get started on PA0 (due in 8 days)

Questions?

