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1 Lambda Calculus

Lambda calculus is a notation for describing mathematical functions and even programs. We will first assume
that there is a countably infinite set of variable names we can use. An element in the language is:

1. A variable x

2. A function e0 applied to an argument e1, written e0(e1) or just e0 e1.

3. Or a body of code with every instance of a variable replaced by a formal argument. λx.e

About parentheses: Parentheses are used just for grouping; they have no meaning on their own. Expressions
are parsed left to right, and lambdas are greedy, extending as far to the right as they can. For simplicity,
multiple variables may be placed after the lambda. This is really just a shorthand for having a lambda
in between each variable. For example, we write λx, y. e as shorthand for λx. λy. e. This shorthand is an
example of syntactic sugar, and the process of removing it is called currying.

What a mathematician might express as:

x 7→ x2

Lambda Calculus expresses as:

λx.x2

This suggests that functions are just ordinary variables, and can be passed as values to a different function
or even themselves.

Lambda calculus has two separate uses here. First, it’s a mathematical way of expressing programs. It
allows us to mathematically manipulate them as data. Second, it’s a fully functional programming language.
It will be used as such.

The syntax of the lambda calculus is defined by a context-free grammar:

e ::= x | λx. e | e0 e1

There are some minor differences between how we write this grammar from the way that grammars
are written in a compilers course. We refer to the e as a syntactic metavariable. That is, it is a variable
representing language syntax; it is not a variable at the level of the programming language. We use subscripts
to differentiate syntactic metavariables. For example, e0 and e1 are both metavariables of the same syntactic
class as e.

1.1 Variable Binding

All variables must be bound. A lambda expression introduces a binding occurrence before the dot. Each
variable must be bound to a binding occurrence. We define the scope of a variable by the closest binding
occurrence. This is called lexical scoping; the variable’s scope is defined by the text of the program. It is
“lexical”, because it is possible to determine its scope before the program runs, by reading the program text
in a straightforward way.

There are different kinds of expressions in a typical programming language: terms and types. A term
represents a value or computation that exists at run time; a type is largely a compile-time expression used by
the compiler to rule out ill-formed programs. For now there are no types; all expressions are terms. A closed
term is a term in which all terms are bound; An open term is the negation of a closed term. A well-formed
program in the lambda calculus is any closed term.
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1.2 β reduction

Now we get to the question of how do we run lambda calculus programs. For example, (λx. e1) e2 should
be equivalent to e1 with e2 replacing all the x’s in e1. We can express this as e1{e2/x}, although there are
many notations for substitution. Pierce writes [x 7→ e2]e1. Because we will be using similar notation for
something else, we will use the notation e1{e2/x}.

For lambda calculus terms to make sense as functions, we expect that the following two terms are
equivalent and should mean the same thing: (λx. e1) e2 and e1{e2/x}. This equivalence is known as a β-
equivalence. Rewriting (λx. e1) e2 into e1{e2/x} is called a β-reduction. If we start with a lambda calculus
expression, in general we may be able to perform beta reductions. This corresponds to executing the lambda
calculus expression as a program.

1.3 CBV vs. CBN

Now we have another question. What order do we perform these beta reductions in? Most languages use
what’s known as Call By Value semantics (CBV). They only call functions on values. In other words,
(λx.e1)e2 only reduces if e2 is a value. But what is a value? We define them as ordinary lambda expressions
which are not applied. In other words λx.x is a value, while (λx.x)1 is not. Here is an example of CBV
evaluation through beta reductions, assuming 3, 4, and SUCC are appropriately defined.

(((λx.(λy.(y x))) 3) SUCC) −→ ((λx.(λy.(y x))) 3)
−→ λy.(y 3)
−→ (λy.(y 3)) SUCC

−→ SUCC 3
−→ 4

Another approach is to use Call by Name semantics (CBN). We defer evaluation of arguments until as
late as possible, applying reductions from left to right within the expression.

1.4 Formal SOS

Let’s try to formalize CBV with a few inference rules.

(λx. e) v −→ e{v/x}
[β reduction]

e1 −→ e′
1

e1 e2 −→ e′
1 e2

e −→ e′

v e −→ v e′

This is an operational semantics for a programming language based on the lambda calculus. An opera-
tional semantics is a language semantics that describes how to run the program. This can be done through
informal human-language text, as in the Java Language Specification, or through more formal rule. Rules
of this form are known as a Structural Operational Semantics (SOS). It defines evaluation in terms of single
steps that can be performed during evaluation, and these single steps are defined in term of the structure of
the expression being evaluated. This kind of semantics is known as a small-step semantics because it only
describes one step at a time; an alternative is a big-step (or large-step) semantics that describes the entire
evaluation of the program to a final value.

We will see other kinds of semantics later in the course, such as axiomatic semantics which tells you what
you can prove about a program. Also, there is denotational semantics, which translates a program into an
underlying mathmatical representation.
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Expressed as SOS, CBN has slightly simpler rules:

(λx. e1) e2 −→ e1{e2/x}
[β reduction]

e0 −→ e′
0

e0 e1 −→ e′
0 e1

We don’t need the rule for evaluating the right-hand side of an application because beta reductions are
done immediately once the left-hand side is a value.

1.5 Ω

Let us define an expression we will call Ω:

Ω = (λx. x x) (λx. x x)

So... what happens when we try to evaluate Ω?

Ω −→ Ω

We’ve just coded an infinite loop!
Now what happens if we try using Ω as a parameter? Consider:

(λx.(λy.y)) Ω

If we use CBV evaluation on the above program, then we have to first reduce Ω. This puts the evaluator
into an infinite loop. CBN on the other hand reduces the above to λy. y. CBN has an important property:
CBN will not go into an infinite loop unless every other semantics would also go into an infinite loop, yet it
agrees with CBV whenever CBV would terminate successfully.
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