
that it enforces the preservation of I~. Step 4 guarantees 
(a) that the concrete operation is applicable whenever 
the abstract pre condition holds and (b) that if the 
operation is performed, the result corresponds properly 
to the abstract specifications. 
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1.  Introduct ion  

The motivation for the design of the CLU program- 
ing language was to provide programmers with a tool 
that would enhance their effectiveness in constructing 
programs of high quality-programs that are reliable 
and reasonably easy to understand, modify, and main- 
tain. CLU aids programmers by providing constructs 
that support the use of abstractions in program design 
and implementation. 

The quality of software depends primarily on the 
programming methodology in use. The choice of pro- 
gramming language, however, can have a major impact 
on the effectiveness of a methodology. A methodology 
can be easy or difficult to apply in a given language, 
depending on how well the language constructs match 
the structures that the methodology deems desirable. 
The presence of constructs that give a concrete form for 
the desired structures makes the methodology more 
understandable. In addition, a programming language 
influences the way that its users think about program- 
ming; matching a language to a methodology increases 
the likelihood that the methodology will be used. 

CLU has been designed to support a methodology 
(similar to [6, 22]) in which programs are developed by 
means of problem decomposition based on the recogni- 
tion of abstractions. A program is constructed in many 
stages. At each stage, the problem to be solved is how 
to implement some abstraction (the initial problem is to 
implement the abstract behavior required of the entire 
program). The implementation is developed by envi- 
sioning a number of subsidiary abstractions (abstract 
objects and operations) that are useful in the problem 
domain. Once the behavior of the abstract objects and 
operations has been defined, a program can be written 
to solve the original problem; in this program, the 
abstract objects and operations are used as primitives. 
Now the original problem has been solved, but new 
problems have arisen, namely, how to implement the 
subsidiary abstractions. Each of these abstractions is 
considered in turn as a new problem; its implementa- 
tion may introduce further abstractions. This process 
terminates when all the abstractions introduced at var- 
ious stages have been implemented or are present in 
the programming language in use. 

In this methodology, programs are developed incre- 
mentally, one abstraction at a time. Further, a distinc- 
tion is made between an abstraction, which is a kind of 
behavior, and a program, or module, which implements 
that behavior. An abstraction isolates use from imple- 
mentation: an abstraction can be used without knowl- 
edge of its implementation and implemented without 
knowledge of its use. These aspects of the methodology 
are supported by the CLU library, which maintains 
information about abstractions and the CLU modules 
that implement them. The library permits separate 
compilation of modules with complete type checking at 
compile time. 
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To make effective use of the methodology, it is 
necessary to understand the kinds of abstractions that 
are useful in constructing programs. In studying this 
question, we identified an important kind of abstrac- 
tion, the data abstraction, that had been largely ne- 
glected in discussions of programming methodology. 

A data abstraction [8, 12, 20] is used to introduce a 
new type of data object that is deemed useful in the 
domain of the problem being solved. At the level of 
use, the programmer is concerned with the behavior of 
these data objects, what kinds of information can be 
stored in them and obtained from them. The program- 
mer is not concerned with how the data objects are 
represented in storage nor with the algorithms used to 
store and access information in them. In fact, a data 
abstraction is often introduced to delay such implemen- 
tation decisions until a later stage of design. 

The behavior of the data objects is expressed most 
naturally in terms of a set of operations that are mean- 
ingful for those objects. This set includes operations to 
create objects, to obtain information from them, and 
possibly to modify them. For example, push and pop 
are among the meaningful operations for stacks, while 
meaningful operations for integers include the usual 
arithmetic operations. Thus a data abstraction consists 
of a set of objects and a set of operations characterizing 
the behavior of the objects. 

If a data abstraction is to be understandable at an 
abstract level, the behavior of the data objects must be 
completely characterized by the set of operations. This 
property is ensured by making the operations the only 
direct means of creating and manipulating the objects. 
One effect of this restriction is that, when defining an 
abstraction, the programmer must be careful to include 
a sufficient set of operations, since every action he 
wishes to perform on the objects must be realized in 
terms of this set. 

We have identified the following requirements 
that must be satisfied by a language supporting data 
abstractions: 

1. A linguistic construct is needed that permits a 
data abstraction to be implemented as a unit. The 
implementation involves selecting a representation for 
the data objects and defining an algorithm for each 
operation in terms of that representation. 

2. The language must limit access to the represen- 
tation to just the operations. This limitation is neces- 
sary to ensure that the operations completely charac- 
terize the behavior of the objects. 

CLU satisfies these requirements by providing a 
linguistic construct called a cluster for implementing 
data abstractions. Data abstractions are integrated into 
the language through the data type mechanism. Access 
to the representation is controlled by type checking, 
which is done at compile time. 

In addition to data abstractions, CLU supports two 
other kinds of abstractions: procedural abstractions and 
control abstractions. A procedural abstraction per- 
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forms a computation on a set of input objects and 
produces a set of output objects; examples of proce- 
dural abstractions are sorting an array and computing a 
square root.  CLU supports procedural  abstractions by 
means of procedures,  which are similar to procedures 
in other programming languages. 

A control abstraction defines a method for sequen- 
cing arbitrary actions. All languages provide built-in 
control abstractions; examples are the if s tatement and 
the while statement.  In addition, however,  CLU allows 
user definitions of a simple kind of control abstraction• 
The method provided is a generalization of the repeti- 
tion methods available in many programming lan- 
guages. Frequently the programmer desires to perform 
the same action for all the objects in a collection, such 
as all characters in a string or all items in a set. CLU 
provides a linguistic construct called an iterator for 
defining how the objects in the collection are obtained. 
The iterator is used in conjunction with the for state- 
ment;  the body of the for statement describes the action 
to be taken. 

The purpose of this paper  is to illustrate the utility 
of the three kinds of abstractions in program construc- 
tion and to provide an informal introduction to CLU.  
We do not at tempt a complete description of the lan- 
guage; rather,  we concentrate on the constructs that 
support abstractions. The presence of these constructs 
constitutes the most important way in which CLU dif- 
fers from other  languages. The language closest to 
CLU is Alphard [24], which represents a concurrent  
design effort  with goals similar to our own. The design 
of CLU has been influenced by Simula 67 [4] and to 
a lesser extent by Pascal [23] and Lisp [15]. 

In the next section we introduce CLU and, by 
means of a programming example, illustrate the use 
and implementation of data abstractions. Section 3 
describes the basic semantics of CLU.  In Section 4, we 
discuss control abstractions and more powerful kinds of 
data abstractions. We present the CLU library in Sec- 
tion 5. Section 6 briefly describes the current imple- 
mentation of CLU and discusses efficiency considera- 
tions. Finally, we conclude by discussing the quality of 
CLU programs. 

2. An Example of Data Abstraction 

This section introduces the basic data abstraction 
mechanism of CLU,  the cluster. By means of an exam- 
ple, we intend to show how abstractions occur naturally 
in program design and how they are used and imple- 
mented in CLU.  In particular, we show how a data 
abstraction can be used as structured intermediate 
storage. 

Consider the following problem: given some docu- 
ment,  we wish to compute,  for each distinct word in the 
document ,  the number  of times the word occurs and its 
frequency of occurrence as a percentage of the total 
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number of words. The document will be represented as 
a sequence of characters. A word is any nonempty 
sequence of alphabetic characters. Adjacent  words are 
separated by one or more nonalphabetic characters 
such as spaces, punctuation, or newline characters. In 
recognizing distinct words, the difference between up- 
per and lower case letters should be ignored. 

The output  is also to be a sequence of characters, 
divided into lines. Successive lines should contain an 
alphabetical list of all the distinct words in the docu- 
ment ,  one word per line. Accompanying each word 
should be the total number of occurrences and the 
frequency of occurrence. For  example: 

a 2 3 .509% 
access 1 1.754% 
and 2 3 .509% 

Specifically, we are required to write the procedure 
count_words, which takes two arguments: an instream 
and an outstrearn. The former is the source of the 
document  to be processed, and the latter is the destina- 
tion of the required output.  The form of this procedure 
will be 

count_words = pro¢ (i: instream, o: outstream); 

end count_words; 

Note that count_words does not return any results; its 
only effects are modifications of i (reading the entire 
document)  and of o (printing the required statistics). 

Instream and outstream are data abstractions. An 
instream i contains a sequence of characters. Of the 
primitive operations on instreams, only two will be of 
interest to us. Empty (i) returns true if there are no 
characters available in i and returns false otherwise. 
Next (i) removes the first character from the sequence 
and returns it. Invoking the next operat ion on an empty 
instream is an error .  1 An outstream also contains a 
sequence of characters. The interesting operat ion on 
outstreams is put_string (s, o), which appends the string 
s to the existing sequence of characters in o.  

Now consider how we might implement count_ 
words. We begin by deciding how to handle words. We 
could define a new abstract data type word. However ,  
we choose instead to use strings (a primitive CLU 
type), with the restriction that only strings of lower case 
alphabetic characters will be used. 2 

Next we investigate how to scan the document• 
Reading a word requires knowledge of the exact way in 
which words occur in the input stream. We choose to 
isolate this information in a procedural  abstraction, 
called next_word, which takes in the instream i and 
returns the next word (converted to lower case charac- 

1 The CLU error handling mechanism is discussed in [10]. 
2 Sometimes it is difficult to decide whether to introduce a new 

data abstraction or to use an existing abstraction. Our  decision to use 
strings to represent words was made partly to shorten the presenta- 
tion. 
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ters) in the document.  If there are no more words, 
next_word must communicate this fact to count_words. 
A simple way to indic.ate that there are no more words 
is by returning an "end of document"  word, one that is 
distinct from any other word. A reasonable choice for 
the "end of document"  word is the empty string. 

It is clear that in count_words we must scan the 
entire document before we can print our results, and 
therefore we need some receptacle to retain informa- 
tion about words between these two actions (scanning 
and printing). Recording the information gained in the 
scan and organizing it for easy printing will probably be 
fairly complex. Therefore  we defer such considerations 
until later by introducing a data abstraction wordbag 
with the appropriate properties.  In particular, wordbag 
provides three operations: create, which creates an 
empty wordbag; insert, which adds a word to the word- 
bag; and print, which prints the desired statistical infor- 
mation about the words in the wordbag. 3 

The implementation of count_words is shown in 
Figure 1. The " % "  character starts a comment,  which 
continues to the end of the line. The " - "  character 
stands for boolean negation. The notation variable: 
type is used in formal argument lists and declarations 
to specify the types of variables; a declaration may be 
combined with an assignment specifying the initial 
value of the variable. Boldface is used for reserved 
,vords, including the names of primitiv e CLU types. 

The count_words procedure declares four variables: 
i, o, wb, and w. The first two denote the instream and 
outstream that are passed as arguments to count_words. 
The third, wb, denotes the wordbag used to hold the 
words read so far, and the fourth, w, the word currently 
being processed. 

Operations of a data abstraction are named by a 
compound form that specifies both the type and the 
operation name. Three examples of operation calls 
appear in count_words: wordbag$create( ), word- 
bag$insert (wb, w) and wordbag$print (wb, o). The 
CLU system provides a mechanism that avoids conflicts 
between names of abstractions; this mechanism is dis- 
cussed in Section 5. However ,  operations of two differ- 
ent data abstractions may have the same name; the 
compound form serves to resolve this ambiguity. Al- 
though the ambiguity could in most cases be resolved 
by context,  we have found in using CLU that the 
compound form enhances the readability of programs. 

The implementation of next_word is shown in Figure 
2. The string$append operation creates a new string by 
appending a character to the characters in the string 
argument (it does not modify the string argument).  
Note the use of the instream operations next and empty. 
Note also that two additional procedures have been 
used: alpha (c), which tests whether a character is 
alphabetic or not, and lower_case (c), which returns the 
lower case version of a character. The implementations 

3 The print operation is not  the ideal choice, but  a better  solution 
requires the use of control abstractions. This solution is presented  in 
Section 4. 
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Fig. 1. The  count_words procedure.  

count_words = prne (i: ins t ream,  o: outs t ream);  
% create an empty  wordbag 
wb: wordbag := wordbag$create  ( ); 

% scan document ,  adding each word found to wb 
w: string := next_word (i); 
while w - =  " " do 

wordbag$insert  (wb, w); 
w := next_word (i); 
end; 

% print the wordbag 
wordbag$print  (wb, o); 

end count_words; 

Fig. 2. The next_word procedure.  

next_word = proc (i: instream) returns (string); 
c: char := ";  

% scan for first alphabetic character  
while ~a lpha  (c) do 

ff ins t ream$empty  (i) 
then return " , 
end, 

c := ins t ream$next  (i); 
end; 

% accumulate  characters in word 
w: string := " ";  
while alpha (c) do 

w := s t r lngSappend (w, c); 
if ins t reamSempty (i) 

then return (w); 
end, 

c := ins t ream$next  (i); 
end; 

return (w); % the nonalphabet ic  character  c is lost 

end next_word; 

of these procedures are not shown in the paper• 
Now we must implement the type wordbag. The 

cluster will have the form 

wordbag = cluster is create,  insert, print; 

end wordbag; 

This form expresses the idea that the data abstraction is 
a set of operations as well as a set of objects. The 
cluster must provide a representation for objects of the 
type wordbag and an implementation for each of the 
operations. We are free to choose from the possible 
representations the one best suited to our use of the 
wordbag cluster• 

The representat ion that we choose should allow 
reasonably efficient storage of words and easy printing, 
in alphabetic order,  of the words and associated statis- 
tics. For efficiency in computing the statistics, main- 
taining a count of the total number  of wolds in the 
document  would be helpful• Since the total number of 
words in the document  is probably much larger than the 
number of distinct words, the representation of a word- 
bag should contain only one " i tem" for each distinct 
word (along with a multiplicity count),  rather than one 
" i tem" for each occurrence• This choice of representa- 
tion requires that, at each insertion, we check whether 
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the new word is already present in the wordbag. We 
would like a representation that allows the search for a 
matching " i tem" and the insertion of a not previously 
present " i tem" to be efficient. A binary tree represen- 
tation [9] fits our requirements nicely. 

Thus the main part of the wordbag representation 
consists of a binary tree. The binary tree is another data 
abstraction, wordtree. The data abstraction wordtree 
provides operations very similar to those of wordbag: 
create ( ) returns an empty wordtree; insert (tr, w) re- 
turns a wordtree containing all the words in the word- 
tree tr plus the additional word w (the wordtree tr may 
be modified in the process); and print (tr, n, o) prints 
the contents of the wordtree tr in alphabetic order on 
outstream o along with the number of occurrences and 
the frequency (based on a total of n words). 

The implementation of wordbag is given in Figure 
3. Following the header,  we find the definition of the 
representation selected for wordbag objects: 

rep = record  [contents: wordtree, total: int]; 

The reserved type identifier rep indicates that the type 
specification to the right of the equal sign is the repre- 
senting type for the cluster. We have defined the repre- 
sentation of a wordbag object to consist of two pieces: a 
wordtree, as explained above, and an integer, which 
records the total number of words in the wordbag. 

A CLU record is an object with one or more named 
components. For each component name, there is an 
operation to select and an operation to set the corre- 
sponding component.  The operation get~n (r) returns 
the n component of the record r (this operation is 
usually abbreviated r.n). The operation put_n (r, x) 
makes x the n component of the record r (this operation 
is usually abbreviated r.n := x, by analogy with the 
assignment statement). A new record is created by an 
expression of the form typeS{namer: valuer . . . .  }. 

There are two different types associated with any 
cluster: the abstract type being defined (wordbag in 
this case) and the representation type (the record). 
Outside of the cluster, type checking ensures that a 
wordbag object will always be treated as such. In par- 
ticular, the ability to convert a wordbag object into its 
representation is not provided (unless one of the word- 
bag operations does so explicitly). 

Inside the duster ,  however, it is necessary to view a 
wordbag object as being of the representation type, 
because the implementations of the operations are de- 
fined in terms of the representation. This change of 
viewpoint is signalled by having the reserved word cvt 
appear as the type of an argument (as in the insert and 
print operations). Cvt may also appear as a return type 
(as in the create operation); here it indicates that a 
returned object will be changed into an object of ab- 
stract type. Whether cvt appears as the type of an 
argument or as a return type, it stipulates a "conver- 
sion" of viewpoint between the external abstract type 

Fig. 3, The wordbag cluster. 

wordbag -- duster  is 
create,  % create an empty bag 
insert,  % insert  an element  
print;  % print contents  of bag 

rep = record [contents: wordtree,  total: int]; 
create = proc ( ) returns (cvt); 

return (rep${contents: wordtree$create  ( ) ,  total: 0}); 
end create;  

insert = proc (x: cvt, v: string); 
x.contents := wordtree$insert  (x.contents,  v); 
x.total := x.total + 1; 
end insert;  

print = proc (x: cvt, o: outstream);  
wordtree$print  (x.contents,  x.total,  o); 
end print; 

end wordbag; 

and the internal representation type. Cvt can be used 
only within a cluster, and conversion can be done only 
between the single abstract type being defined and the 
(single) representation type .4 

The procedures in wordbag are very simple. Create 
builds a new instance of the rep by use of the record 
constructor 

rep${contents: wordtree$create ( ) ,  total: 0} 

Here total is initialized to 0 and contents to the empty 
wordtree (by calling the create operation of wordtree). 
This rep object is converted into a wordbag object as it 
is being returned. Insert and print are implemented 
directly in terms of wordtree operations. 

The implementation of wordtree is shown in Figure 
4. In the wordtree representation, each node contains a 
word and the number of times that word has been 
inserted into the wordbag, as well as two subtrees. For 
any particular node, the words in the "lesser" subtree 
must alphabetically precede the word in the node, and 
the words in the "greater" subtree must follow the 
word in the node. This information is described by 

n o d e  = record  [va lue :  s tr ing ,  count :  int ,  
lesser: wordtree, greater: wordtree]; 

which defines "node"  to b e ' a n  abbreviation for the 
information following the equal sign. (The reserved 
word rep is used similarly as an abbreviation for the 
representation type .) 

Now consider the representation of wordtrees. A 
nonempty wordtree can be represented by its top node. 
An empty wordtree, however, contains no information. 
The ideal type to represent an empty wordtree is the 
CLU type null, which has a single data object nil. So 
the representation of a wordtree should be either a 
node or nil. This representation is expressed by 

rep = o n e o f  [empty: null, non_empty: node]; 

Just as the record is the basic CLU mechanism to 

4 Cvt corresponds to Morris '  seal and unseal [16] except that  cvt 
represents a change in viewpoint only; no computat ion is required.  

5 6 8  Communicat ions August  1977 
of Volume 20 
the ACM Number  8 



form an object  that is a collection of other  objects,  the 
oneof  is the basic CLU mechanism to form an object  
that is "one  of"  a set of alternatives. Oneof  is CLU ' s  
method of forming a discriminated union, and is some- 
what similar to a variant component  of a record in 
Pascal [23]. 

An object  of the type oneof  [sl: T1 . . . s~: Tn] can 
be thought of as a pair. The " tag"  component  is an 
identifier f rom the set {sl • • • s~}. The "value"  compo-  
nent is an object  of the type corresponding to the tag. 
That  is, if the tag component  is ~, then the value is 
some object  of type Ti. 

Objects of type oneof  [sl: T1 . . . Sn: Tn] are created 
by the operat ions make_s~(x), each of which takes an 
object x of type Ti and returns the pair (si, x). Because 
the type of the value component  of  a oneof  object  is not 
known at compile time, allowing direct access to the 
value component  could result in a run-time type error  
(e.g. assigning an object  to a variable of the wrong 
type).  To eliminate this possibility, we require the use 
of a special tagease statement  to decompose a oneof  
object: 

tagcase e 
tag sl (idl: TO: statements . . . 

tag Sn (idn: Tn): statements . . . 
end; 

This s ta tement  evaluates the expression e to obtain an 
object  of type oneof  [s~: T1 . . . Sn: Tn]. If  the tag is s~, 
then the value is assigned to the new variable idi and 
the statements following the ith alternative are exe- 
cuted. The variable idi is local to those statements .  If, 
for some reason,  we do not need the value, we can omit  
the parenthesized variable declaration. 

The reader  should now know enough to understand 
Figure 4. Note ,  in the create operat ion,  the use of the 
construction operat ion make_empty of the representa-  
tion type of wordtree (the discriminated union o n e o f  
[empty: null, nonempty:  node]) to create the empty  
wordtree. The tagcase statement  is used in both insert 
andprint. Note that if insert is given an empty  wordtree, 
it creates a new top node for the returned value, but if 
insert is given a nonempty  wordtree, it modifies the 
given wordtree and returns i t ?  The insert operat ion 
depends on the dynamic allocation of space for newly 
created records (see Section 3). 

The print operat ion uses the obvious recursive de- 
scent. It  makes  use of procedure print_word (w, c, t, o), 
which generates a single line of output  on o consisting 
of the word w, the count c, and the frequency of 
occurrence derived from c and t. The implementat ion 
of print_word has been omitted.  

We have now completed our first discussion of the 

5 It is necessary for insert to return a value in addition having a 
side effect because in the case of  an empty wordtree argument side 
effects are not possible. Side effects are not possible because of  the 
representation chosen for the empty wordtree and because of the 
CLU parameter  passing mechanism (see Section 3). 

Fig. 4. The wordtree cluster. 

wordtree = dus te r  is 
create, % create empty contents 
insert, % add item to contents 
print; % print contents 
node = record [value: string, count: int• 

lesser: wordtree• greater: wordtree],  
rep = oneof [empty: null, non_empty: node]; 

create = proc ( ) returns (twt); 
return (rep$make_empty (nil)); 
end create; 

insert = proc (x: cvt• v: string) returns (cvt); 
tagcase x 

tag empty: 
n: node := nodeS{value: v• count: 1, 

lesser: wordtree$create ( ) ,  
greater: wordtree$create ( )}; 

return (rep$make_non_empty (n)); 
tag non_empty (n: node): 

if v = n.value 
then n.count := n.count + 1; 

elseif v < n.value 
then n.lesser := wordtree$insert  (n.lesser, v); 

else n.greater := wordtree$insert  (n.greater. v); 
end; 

return (x); 
end; 

end insert; 
print = proc (x: cvt• total: int, o: outstream); 

tagcase x 
tag empty: ; 
tag non_empty (n: node): 

wordtree$print  (n.lesser• total, o); 
print,word (n.value. n. count, total, o); 
wordtree$print  (n.greater, total, o); 

end; 
end print; 

end wordtree; 

court_words procedure.  We return to this problem in 
Section 4, where we present a superior solution. 

3 .  Semant i c s  

All languages present  their users with some model 
of computat ion.  This section describes those aspects of 
CLU semantics that differ f rom the common Algol-like 
model.  In particular,  we discuss CLU's  notions of ob- 
jects and variables and the definitions of assignment 
and argument  passing that follow from these notions. 
We also discuss type correctness.  

3 .1  Objec t s  and Variables  
The basic elements of CLU semantics are objects 

and variables• Objects  are the data entities that are 
created and manipulated by C L U  programs.  Variables 
are just the names used in a program to refer to objects.  

In CLU,  each object has a particular type, which 
characterizes its behavior.  A type defines a set of oper-  
ations that create and manipulate objects of that type.  
An object  may be created and manipulated only via the 
operat ions of its type. 

An object  may refer to objects.  For example ,  a 
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record object refers to the objects that are the compo- 
nents of the record. This notion is one of logical, not 
physical, containment. In particular, it is possible for 
two distinct record objects to refer to (or share) the 
same component object. In the case of a cyclic struc- 
ture, it is even possible for an object to "contain" itself. 
Thus it is possible to have recursive data structure 
definitions and shared data objects without explicit 
reference types. The wordtree type described in the 
previous section is an example of a recursively defined 
data structure. (This notion of object is similar to that 
in Lisp.) 

CLU objects exist independently of procedure acti- 
vations. Space for objects is allocated from a dynamic 
storage area as the result of invoking constructor oper- 
ations of certain primitive CLU types. For example, the 
record constructor is used in the implementation of 
wordbag (Figure 3) to acquire space for new wordbag 
objects. In theory, all objects continue to exist forever. 
In practice, the space used by an object may be re- 
claimed when the object is no longer accessible to any 
CLU program? 

An object may exhibit time-varying behavior. Such 
an object, called a mumble object, has a state which 
may be modified by certain operations without chang- 
ing the identity of the object. Records are examples of 
mutable objects. The record update operations (put_s 
(r, v), written as r.s := v in the examples), change the 
state of record objects and therefore affect the behavior 
of subsequent applications of the select operations 
(get_s (r), written as r.s). The wordbag and wordtree 
types are additional examples of types with mutable 
objects. 

If a mutable object m is shared by two other objects 
x and y,  then a modification to m made via x will be 
visible when m is examined via y.  Communication 
through shared mutable objects is most beneficial in the 
context of procedure invocation, described below. 

Objects that do not exhibit time-varying behavior 
are called immutable objects, or constants. Examples of 
constants are integers, booleans, characters, and 
strings. The value of a constant object can not be 
modified. For example, new strings may be computed 
from old ones, but existing strings do not change. 
Similarly, none of the integer operations modify the 
integers passed to them as arguments. 

Variables are names used in CLU programs to de- 
note particular objects at execution time. Unlike varia- 
bles in many common programming languages, which 
are objects that contain values, CLU variables are sim- 
ply names that the programmer uses to refer to objects. 
As such, it is possible for two variables to denote (or 
share) the same object. CLU variables are much like 
those in Lisp and are similar to pointer variables in 
other languages. However, CLU variables are not ob- 
jects; they cannot be denoted by other variables or 

6 An object is accessible if it is denoted by a variable of an active 
procedure or is a component of an accessible object. 

referred to by objects. Thus variables are completely 
private to the procedure in which they are declared 
and cannot be accessed or modified by any other 
procedure. 

3.2 Assignment and Procedure Invocation 
The basic actions in CLU are assignment and proce- 

dure invocation. The assignment primitive x :-- E, 
where x is a variable and E is an expression, causes x to 
denote the object resulting from the evaluation of E. 
For example, if E is a simple variable y,  then the 
assignment x := y causes x to denote the object denoted 
by y. The object is not copied; after the assignment is 
performed, it will be shared by x and y. Assignment 
does not affect the state of any object. (Recall that 
r.s :-- v is not a true assignment, but an abbreviation for 
put_s (r, v).) 

Procedure invocation involves passing argument 
objects from the caller to the called procedure and 
returning result objects from the procedure to the 
caller. The formal arguments of a procedure are con- 
sidered to be local variables of the procedure and are 
initialized, by assignment, to the objects resulting from 
the evaluation of the argument expressions. Thus argu- 
ment objects are shared between the caller and the 
called procedure. A procedure may modify mutable 
argument objects (e.g. records), but of course it cannot 
modify immutable ones (e.g. integers). A procedure 
has no access to the variables of its caller. 

Procedure invocations may be used directly as state- 
ments; those that return objects may also be used 
as expressions. Arbitrary recursive procedures are 
permitted. 

3.3 Type Correctness 
Every variable in a CLU module must be declared; 

the declaration specifies the type of object that the 
variable may denote. All assignments to a variable 
must satisfy the variable's declaration. Because argu- 
ment passing is defined in terms of assignment, the 
types of actual argument objects must be consistent 
with the declarations of the corresponding formal 
arguments. 

These restrictions, plus the restriction that only the 
code in a cluster may use evt to convert between the 
abstract and representation types, ensure that the be- 
havior of an object is indeed characterized completely 
by the operations of its type. For example, the type 
restrictions ensure that the only modification pos- 
sible to a record object that represents a wordbag (Fig- 
ure 3) is the modification performed by the insert 
operation. 

Type checking is performed on a module by module 
basis at compile time (it could also be done at run 
time). This checking can catch all type errors-even 
those involving intermodule references-because the 
CLU library maintains the necessary type information 
for all modules (see Section 5). 
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4. More Abstraction Mechanisms 

In this section we continue our  discussion of ab- 
straction mechanisms in CLU.  A generalization of the 
wordbag abstraction, called sorted_ bag, is presented as 
an illustration of parameterized clusters, which are a 
means for implementing more generally applicable data 
abstractions. The presentation of sorted_bag is also 
used to motivate the introduction of a control abstrac- 
tion called an iterator, which is a mechanism for incre- 
mentally generating the elements of a collection of 
objects. Finally, we show an implementation of the 
sorted_bag abstraction and illustrate how sorted_bag 
can be used in implementing count_words. 

4.1 Properties of the Sorted_bag Abstraction 
In the count_words procedure given earlier, a data 

abstraction called wordbag was used. A wordbag object 
is a collection of strings, each with an associated count. 
Strings are inserted into a wordbag object one at a 
time. Strings in a wordbag object may be printed in 
alphabetical order ,  each with a count of the number  of 
times it was inserted. 

Although wordbag has properties that are specific 
to the usage in count_words, it also has properties in 
common with a more general abstraction, sorted_bag. 
A bag is similar to a set (it is sometimes called a 
multiset) except that an item can appear in a bag many 
times. For example, if the integer 1 is inserted in the set 
{1, 2}, the result is the set {1, 2}, but if 1 is inserted 
in the bag {1, 2}, the result is the bag {1, 1, 2}. A 
sorted_bag is a bag that affords access to the items it 
contains according to an ordering relation on the items. 

The concept of a sorted_bag is meaningful not only 
for strings but  for many types of items. Therefore  we 
would like to parameterize the sorted_bag abstraction, 
the parameter  being the type of item to be collected in 
the sorted_bag objects. 

Most programming languages provide built-in para- 
meterized data abstractions. For example, the concept 
of an array is a parameterized data abstraction, An 
example of a use of arrays in Pascal is 

array 1..n of integer 

These arrays have two parameters,  one specifying the 
array bounds (1..n) and one specifying the type of 
element in the array (integer). In CLU we provide 
mechanisms allowing user-defined data abstractions 
(like sorted_bag) to be parameterized. 

In the sorted_bag abstraction, not all types of items 
make sense. Only types that define a total ordering on 
their objects are meaningful since the sorted_bag ab- 
straction depends on the presence of this ordering. In 
addition, information about the ordering must be ex- 
pressed in a way that is useful for programming. A 
natural way to express this information is by means of 
operations of the item type. Therefore  we require that 
the item type provide less than and equal operations 
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(called It and equal). This constraint is expressed in the 
header  for sorted_bag: 

sorted_bag = duster [t: type] is create,  insert . . . .  
where t has 

It, equal: proctype (t, t) returns (bool); 

The item type t is a formal parameter of the sorted_bag 
cluster; whenever the sorted_bag abstraction is used, 
the item type must be specified as an actual parameter, 
e.g. 

sorted_ bag [string] 

The information about  required operations informs 
the programmer about legitimate uses of sorted_bag. 
The compiler will check each use of sorted_bag to 
ensure that the item type provides the required opera- 
tions. The where clause specifies exactly the informa- 
tion that the compiler can check. Of  course, more is 
assumed about the item type t than the presence of 
operations with appropriate names and functionalities: 
these operations must also define a total ordering on 
the items. Although we expect formal and complete 
specifications for data abstractions to be included in the 
CLU library eventually, we do not include in the CLU 
language declarations that the compiler cannot check. 
This point is discussed further in Section 7. 

Now that we have decided to define a sorted_bag 
abstraction that works for many item types, we must 
decide what operations this abstraction provides. When 
an abstraction (like wordbag) is written for a very 
specific purpose,  it is reasonable to have some special- 
ized operations. For a more general abstraction, the 
operations should be more generally useful. 

The print operation is a case in point. Printing is 
only one possible use of the information contained in a 
sorted_bag. It was the only use in the case of wordbag, 
so it was reasonable to have a print operation. How- 
ever, if sorted_bags are to be generally useful, there 
should be some way for the user to obtain the elements 
of the sorted_bag; the user can then perform some 
action on the elements (for example,  print them).  

What we would like is an operation on sorted_bags 
that makes all of the elements available to the caller in 
increasing order.  One possible approach is to map the 
elements of a sorted_bag into a sequence object ,  a 
solution potentially requiring a large amount  of space. 
A more efficient method is provided by CLU and is 
discussed below. This solution computes the sequence 
one element at a time, thus saving space. If only part of 
the sequence is used (as in a search for some element) ,  
then execution time can be saved as well. 

4.2 Control Abstractions 
The purpose of many loops is to perform an action 

on some or all of the objects in a collection. For  such 
loops, it is often useful to separate the selection of the 
next object from the action performed on that object.  
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Fig. 5. Use and definition of a simple iterator. 

count_numeric = proc (s: string) returns (int); 
count: int := O; 
for c: char in string_chars (s) do 

ff charis_numeric (c) 
then count := count + 1; 
end; 

end; 
return (count); 
end count_numeric; 

string_chars = iter (s: string) yields (char); 
index: int := 1; 
limit: int := string$size (s); 
while index < = limit do 

yield (string$fetch (s, index)); 
index := index + 1; 
end; 

end string_chars; 

CLU provides a control abstraction that permits a com- 
plete decomposit ion of the two activities. The for state- 
ment available in many programming languages pro- 
vides a limited ability in this direction: it iterates over 
ranges of integers. The CLU for statement can iterate 
over collections of any type of object .  The selection of 
the next object  in the collection is done by a user- 
defined iterator. The iterator produces the objects in 
the collection one at a time (the entire collection need 
not physically exist); each object is consumed by the for 
statement in turn. 

Figure 5 gives an example of a simple i terator called 
string_chars, which produces the characters in a string 
in the order  in which they appear.  This i terator uses 
string operations size(s), which tells how many charac- 
ters are in the string s, and fetch (s, n), which returns 
the nth character in the string s (provided the integer n 
is greater than zero and does not exceed the size of the 
string) .r 

The general form of the CLU for statement is 

for declarations in iterator_invocation do 
body 
end; 

An example of the use of the for statement occurs in 
the count_numeric procedure (see Figure 5), which 
contains a loop that counts the number  of numeric 
characters in a string. Note that the details of how the 
characters are obtained from the string are entirely 
contained in the definition of the iterator.  

Iterators work as follows: A for statement initially 
invokes an iterator,  passing it some arguments. Each 
time a yield statement is executed in the iterator,  the 
objects yielded 8 are assigned to the variables declared 
in the for statement (following the reserved word for) 

T A while loop is used in the implementation of string_chars so 
that the example will be based on familiar concepts. In actual prac- 
tice, such a loop would be written by using a for statement invoking a 
primitive iterator. 

8 Zero or more objects may be yielded, but the number and types 
of objects yielded each time by an iterator must agree with the 
number and types of variables in a for statement using the iterator. 

in corresponding order,  and the body of the for state- 
ment is executed. Then the iterator is resumed at the 
statement following the yield statement,  in the same 
environment as when the objects were yielded. When 
the iterator terminates,  by either an implicit or explicit 
return, the invoking for statement terminates. The iter- 
ation may also be prematurely terminated by a return 
in the body of the for statement.  

For  example,  suppose that string_chars is invoked 
with the string "a3" .  The first character yielded is 'a ' .  
At  this point,  within string_chars, index = 1 and limit = 
2. Next the body of the for statement is per formed.  
Since the character 'a' is not numeric,  count remains at 
0. Next string_chars is resumed at the statement after 
the yield statement,  and when resumed,  index = 1 and 
limit = 2. Then index is assigned 2, and the character 
'3' is selected from the string and yielded. Since '3' is 
numeric,  count becomes 1. Then string_chars is re- 
sumed, with index = 2 and limit = 2, and index is 
incremented,  which causes the while loop to terminate.  
The implicit return terminates both the i terator and the 
for statement,  with control resuming at the s tatement  
after the for statement,  and count = 1. 

While iterators are useful in general,  they are espe- 
cially valuable in conjunction with data abstractions 
that are collections of objects (such as sets, arrays, and 
sorted_bags ). Iterators afford users of such abstractions 
access to all objects in the collection without exposing 
irrelevant details. Several i terators may be included in a 
data abstraction. When the order  of obtaining the ob- 
jects is important,  different iterators may provide dif- 
ferent orders.  

4.3 Implementation and Use of Sorted_bag 
Now we can describe a minimal set of operations for 

sorted_bag. The operations are create, insert, size, and 
increasing. Create, insert, and size are procedural  ab- 
stractions that,  respectively, create a sorted_bag, insert 
an item into a sorted_bag, and give the number  of items 
in a sorted_bag. Increasing is a control abstraction that 
produces the items in a sorted_bag in increasing order;  
each item produced is accompanied by an integer rep- 
resenting the number  of times the item appears in the 
sorted_bag. Note that other  operations might also be 
useful for sorted_bag, for example,  an i terator yielding 
the items in decreasing order.  In general,  the definer of 
a data abstraction can provide as many operations as 
seems reasonable.  

In Figure 6, we give an implementation of the 
sorted_bag abstraction. It is implemented by using a 
sorted binary tree,  just as wordbag was implemented.  
Thus a subsidiary abstraction is necessary. This abstrac- 
tion, called tree, is a generalization of the wordtree 
abstraction (used in Section 2), which has been 
parameterized to work for all ordered types. An imple- 
mentation of tree is given in Figure 7. Notice that both 
the tree abstraction and the sorted_bag abstraction 
place the same constraints on their type parameters .  
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Fig. 6. The sorted_bag cluster. 

sorted_bag = duster  [t: type] is create, insert, size, increasing 
where t has equal, It: proctype (t, t) returns (bool); 
rep = record [contents: tree[t], total: int]; 

create = proc ( ) returns (cvt); 
return (rep${contents: tree[t]$create ( ) ,  total: 0}); 
end create; 

insert = proc (sb: cvt, v: t); 
sb.contents := tree[t]$insert (sb.contents, v); 
sb.total := sb.total + 1; 
end insert; 

size = proc (sb: cvt) returns (int); 
return (sb.total); 
end size; 

increasing = i t e r  (sb: cvt) yields (t, int); 
for item: t, count: int 

in tree[t]$increasing (sb.contents) do 
yield (item, count); 
end; 

end increasing; 
end sorted_bag; 

Fig. 7. The tree cluster. 

tree = duster  [t: type] is create, insert, increasing 
where t has equal, It: proctype (t, t) returns (bool); 
node = record [value: t, count: int, 

lesser: tree[t], greater: tree[t]]; 
rep = oneof [empty: null, non_empty: node]; 

create = proc ( ) returns (cvt); 
return (rep$make_empty (nil)); 
end create; 

insert = proc (x: cvt, v: t) returns (cvt); 
tagcase x 

tag empty: 
n: node := nodeS{value: v, count: 1, 

lesser: tree[t]$create ( ) ,  
greater: tree[t]$create ()}; 

return (rep$make__non_empty (n)); 
tag non_empty (n: node): 

if t$cqual (v, n.value) 
then n.count := n.count + 1; 

elseif t$1t (v, n.value) 
then n.lesser := tree[t]$insert (n.lesser, v); 

else n.greater := tree[t]$insert (n.greater, v); 
end; 

return (x); 
end; 

end insert; 
increasing --- iter (x: ¢vt) yields (t, int); 

tagcase x 
tag empty: ; 
tag non_empty (n: node): 

for item: t, count: int 
in tree[t]$increasing (n.lesser) do 

yield (item, count); 
end; 

yield (n.value, n.count); 
for item: t, count: int 

in' tree [t]$increasing (n.greater) do 
yield (item, count); 
end; 

end; 
end increasing; 

end tree; 
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An important  feature of the sorted_bag and tree 
clusters is the way that the cluster parameter  is used in 
places where the type string was used in wordbag and 
wordtree. This usage is especially evident in the imple- 
mentation of tree. For example, tree has a representa- 
tion that stores values of type t: the value component  of 
a node must be an object of type t. 

In the insert operation of tree, the It and equal 
operations of type t are used. We have used the com- 
pound form, e.g. t$equal (v, n .value), to emphasize that 
the equal operation of t is being used. The short form, 
v = n.value, could have been used instead. 

The increasing i terator of tree works as follows: first 
it yields all items in the current tree that are less than 
the item at the top node; the items are obtained by a 
recursive use of itself, passing the lesser subtree as an 
argument.  Next it yields the contents of the top node,  
and then it yields all items in the current tree that are 
greater than the item at the top node (again by a 
recursive use of itself). In this way it performs a com- 
plete walk over the tree,  yielding the values at all 
nodes, in increasing order.  

Finally, we show in Figure 8 how the original proce- 
dure count_words can be implemented in terms of 
sorted_bag. Note that the count_words procedure now 
uses sorted_bag [string] instead of wordbag. 
Sorted_bag[string] is legitimate since the type string 
provides both It and equal operations. Note that two for 
statements are used in count_words. The second for 
statement prints the words in alphabetic order,  using 
the increasing i terator of sorted_bag. The first for state- 
ment inserts the words into the sorted_bag; it uses an 
iterator 

words = iter (i: instream) yields (string); 

end words; 

The definition of words is left as an exercise for the 
reader.  

5. The CLU Library 

So far, we have shown CLU modules as separate 
pieces of text,  without explaining how they are bound 
together to form a program. This section describes the 
CLU library, which plays a central role in supporting 
intermodule references.  

The CLU library contains information about ab- 
stractions. The library supports incremental program 
development ,  one abstraction at a time, and, in addi- 
tion, makes abstractions that are defined during the 
construction of one program available as a basis for 
subsequent program development.  The information in 
the library permits the separate compilation of single 
modules with complete type checking of all external 
references (such as procedure invocations). 

The structure of the library derives from the funda- 
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mental distinction between abstractions and implemen- 
tations. For each abstraction, there is a description unit 
which contains all system-maintained information 
about that abstraction. Included in the description unit 
are zero or more modules that implement the abstrac- 
tion .9 

The most important information contained in a de- 
scription unit is the abstraction's interface specification, 
which is that information needed to type-check uses of 
the abstraction. For procedural and control abstrac- 
tions, this information consists of the number and types 
of parameters, arguments, and output values, plus any 
constraints on type parameters (i.e. required opera- 
tions, as described in Section 4). For data abstractions, 
it includes the number and types of parameters, con- 
straints on type parameters, and the name and interface 
specification of each operation. 

An abstraction is entered in the library by submit- 
ting the interface specification; no implementations are 
required. In fact, a module can be compiled before any 
implementations have been provided for the abstrac- 
tions that it uses; it is necessary only that interface 
specifications have been given for those abstractions. 
Ultimately, there can be many implementations of an 
abstraction; each implementation is required to satisfy 
the interface specification of the abstraction. Because 
all uses and implementations of an abstraction are 
checked against the interface specification, the actual 
selection of an implementation can be delayed until just 
before (or perhaps during) execution. We imagine a 
process of binding together modules into programs, 
prior to execution, at which time this selection would 
be made. 

An important detail of the CLU system is the 
method by which CLU modules refer to abstractions. 
To avoid problems of name conflicts that can arise in 
large systems, the names used by a module to refer to 
abstractions can be chosen to suit the programmer's 
convenience. When a module is submitted for compila- 
tion, its external references must be bound to descrip- 
tion units so that type checking can be performed. The 
binding is accomplished by constructing an association 
list, mapping names to description units, which is 
passed to the compiler along with the source code when 
compiling the module. The mapping in the association 
list is stored by the compiler in the library as part of the 
module. A similar process is involved in entering inter- 
face specifications of abstractions, as these will include 
references to other (data) abstractions. 

When the compiler type-checks a module, it uses 
the association list to map the external names in the 
module to description units and then uses the interface 
specifications in those description units to check that 
the abstractions are used correctly. The type correct- 
ness of the module thus depends upon the binding of 

9 Other information that may be stored in the library includes 
information about relationships among abstractions, as might be 
expressed in a module interconnection language [5, 21]. 

Fig. 8. The count_words procedure using iterators. 

count_words = proc (i: instream, o: outstream); 
wordbag = sorted_bag[string]; 
% create an empty wordbag 
wb: wordbag := wordbag$create ( ); 
% scan document, adding each word found to wb 
for word: string in words (i) do 

wordbag$insert (wb, word); 
end; 

% print the wordbag 
total: int := wordbag$size (wb); 
for w: string, count: int in wordbag$increasing (wb) do 

print_word (w, count, total, o); 
end; 

end count_words; 

names to description units and the interface specifica- 
tions in those description units, and could be invali- 
dated if changes to the binding or the interface specifi- 
cations were subsequently made. For this reason, the 
process of compilation permanently binds a module to 
the abstractions it uses, and the interface description of 
an abstraction, once defined, is not allowed to change. 
(Of course, a new description unit can be created to 
describe a modified abstraction.) 

6. Implementation 

This section briefly describes the current implemen- 
tation of CLU and discusses its efficiency. 

The implementation is based on a decision to repre- 
sent all CLU objects by object descriptors, which are 
fixed-size values containing a type code and some type- 
dependent information. 1° In the case of mutable types, 
the type-dependent information is a pointer to a sepa- 
rately allocated area containing the state information. 
For constant types, the information either directly con- 
tains the value (if the value can be encoded in the 
information field, as for integers, characters, and 
booleans) or contains a pointer to separately allocated 
space (as for strings). The type codes are used by the 
garbage collector to determine the physical representa- 
tion of objects so that the accessible objects can be 
traced; they are also useful for supporting program 
debugging. 

The use of fixed-size object descriptors allows varia- 
bles to be fixed-size cells. Assignment is efficient: the 
object descriptor resulting from the evaluation of the 
expression is simply copied into the variable. In addi- 
tion, a single size for variables facilitates the separate 
compilation of modules and allows most of the code of 
a parameterized module to be shared among all instan- 
tiations of the module. The actual parameters are made 
available to this code by means of a small parameter- 
dependent section, which is initialized prior to execu- 
tion. 

10 Object descriptors are similar to capabilities [11]. 
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Procedure invocation is relatively efficient. A single 
program stack is used, and argument passing is as 
efficient as assignment. Iterators are a form of corou- 
tine; however, their use is sufficiently constrained that 
they are implemented using just the program stack. 
Using an iterator is therefore only slightly more expen- 
sive than using a procedure. 

The data abstraction mechanism is not inherently 
expensive. No execution-time type checking is neces- 
sary. Furthermore, the type conversion implied by cvt 
is merely a change in the view taken of an object's type 
and does not require any computation. 

A number of optimization techniques can be ap- 
plied to a collection of modules if one is willing to give 
up the flexibility of separate compilation. The most 
effective such optimization is the inline substitution of 
procedure (and iterator) bodies for invocations [18]. 
The use of data abstractions tends to introduce extra 
levels of procedure invocations that perform little or no 
computation. As an example, consider the word- 
bag$insert operation (Figure 3), which merely invokes 
the wordtree$insert operation and increments a 
counter. If data abstractions had not been used, these 
actions would most likely have been performed directly 
by the count_words procedure. The wordbag$insert op- 
eration is thus a good candidate for being compiled 
inline. Once inline substitution has be_en performed, 
the increase in context will enhance the effectiveness of 
conventional optimization techniques [1-3]. 

7.  Discussion 

Our intent in this paper has been to provide an 
informal introduction to the abstraction mechanisms in 
CLU. By means of programming examples, we have 
illustrated the use of data, procedural, and control 
abstractions and have shown how CLU modu!es are 
used to implement these abstractions. We have not 
attempted to provide a complete description of CLU, 
but, in the course of explaining the examples, most 
features of the language have appeared. One important 
omission is the CLU exception handling mechanism 
(which does support abstractions); this mechanism is 
described in [10]. 

In addition to describing constructs that support 
abstraction, previous sections have covered a number 
of other topics. We have discussed the semantics of 
CLU. We have described the organization of the CLU 
library and discussed how it supports incremental pro- 
gram development and separate compilation and type 
checking of modules. Also we have described our cur- 
rent implementation and discussed its efficiency. 

In designing CLU, our goal was to simplify the task 
of constructing reliable software that is reasonably easy 
to understand, modify, and maintain. It seems appro- 
priate, therefore, to conclude this paper with a discus- 
sion of how CLU contributes to this goal. 

The quality of any program depends upon the skill 
of the designer. In CLU programs, this skill is reflected 
in the choice of abstractions. In a good design, abstrac- 
tions will be used to simplify the connections between 
modules and to encapsulate decisions that are likely to 
change [17]. Data abstractions are particularly valuable 
for these purposes. For example, through the use of a 
data abstraction, modules that share a system database 
rely only on its abstract behavior as defined by the 
database operations. The connections among these 
modules are much simpler than would be possible if 
they shared knowledge of the format of the database 
and the relationship among its parts. In additioo, the 
database abstraction can be reimplemented without 
affecting the code of the modules that use it. CLU 
encourages the use of data abstractions and thus aids 
the programmer during program design. 

The benefits arising from the use of data abstrac- 
tions are based on the constraint, inherent in CLU and 
enforced by the CLU compiler, that only the opera- 
tions of the abstraction may access the representations 
of the objects. This constraint ensures that the distinc- 
tion made in CLU between abstractions and implemen- 
tations applies to data abstractions as well as to proce- 
dural and control abstractions. 

The distinction between abstractions and imple- 
mentations eases program modification and mainte- 
nance. Once it has been determined that an abstraction 
must be reimplemented, CLU guarantees that the code 
of all modules using that abstraction will be unaffected 
by the change. The modules need not be repro- 
grammed or even recompiled; only the process of se- 
lecting the implementation of the abstraction must be 
redone. The problem of determining what modules 
must be changed is also simplified because each module 
has a well-defined purpose- to  implement an abstrac- 
t i on -and  no other module can interfere with that 
purpose. 

Understanding and verification of CLU programs is 
made easier because the distinction between abstrac- 
tions and implementations permits this task to be de- 
composed. One module at a time is studied to deter- 
mine that it implements its abstraction. This study re- 
quires understanding the behavior of the abstractions it 
uses, but it is not necessary to understand the modules 
implementing those abstractions. Those modules can 
be studied separately. 

A promising way to establish the correctness of a 
program is by means of a mathematical proof. For 
practical reasons, proofs should be performed (or at 
least check.ed) by a verification system, since the proc- 
ess of constructing a proof is tedious and error-prone. 
Decomposition of the proof is essential for program 
proving, which is practical only for small programs (like 
CLU modules). Note that when the CLU compiler 
does type checking, it is, in addition to enforcing the 
constraint that permits the proof to be decomposed, 
also performing a small part of the actual proof. 
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We have included as declarations in CLU just the 
information that the compiler can check with reasona- 
ble efficiency. We believe that the other information 
required for proofs (specifications and assertions) 
should be expressed in a separate "specification" lan- 
guage. The properties of such a language are being 
studied [7, 13, 14, 19]. We intend eventually to add 
formal specifications to the CLU system; the library is 
already organized to accommodate this addition. At 
that time various specification language processors 
could be added to the system. 

We believe that the constraints imposed by CLU 
are essential for practical as well as theoretical reasons. 
It is true that data abstractions can be used in any 
language by establishing programming conventions to 
protect the representations of objects. However, con- 
ventions are no substitute for enforced constraints. It is 
inevitable that the conventions will be viola ted-and 
are likely to be violated just when they are needed 
most, in implementing, maintaining, and modifying 
large programs. It is precisely at this time, when the 
programming task becomes very difficult, that a lan- 
guage like CLU will be most valuable and appreciated. 
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