
that it enforces the preservation of I~. Step 4 guarantees
(a) that the concrete operation is applicable whenever
the abstract pre condition holds and (b) that if the
operation is performed, the result corresponds properly
to the abstract specifications.

Acknowledgments. We owe a great deal to our col-
leagues at Carnegie-Mellon University and the Univer-
sity of Southern California Information Sciences Insti-
tute, especially Mario Barbacci, Neil Goldman, Donald
Good, John Guttag, Paul Hilfinger, David Jefferson,
Anita Jones, David Lamb, David Musser, Karla Per-
due , Kamesh Ramakrishna, and David Wile. We
would also like to thank James Horning and Barbara
Liskov and their groups at the University of Toronto
and M.I.T., respectively, for their critical reviews of
Alphard. We also appreciate very much the perceptive
responses that a number of our colleagues have made
on an earlier draft of this paper. Finally, we are grateful
to Raymond Bates, David Lamb, Brian Reid, and
Martin Yonke for their expert assistance with the docu-
ment formatting programs.

References
1. Dahl, O.-J., and Hoare, C.A.R. Hierarchical program struc-
tures. In Structured Programming, O.-J. Dahl, E.W. Dijkstra, and
C.A.R. Hoare, Academic Press, New York, 1972, pp. 175-220.
2. Hoare, C.A.R. A note on the for statement. BIT 12 (1972),
334-341.
3. Hoare, C.A.R. Proof of correctness of data representations.
Acta lnformatica 1 , 4 (1972), 271-281.
4. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language Pascal. Acta lnformatica 2 , 4 (1973), 335-
355.
5. Igarashi, S., London, R.L., and Luckham, D.C. Automatic
program verification I: a logical basis and its implementation. Acta
lnformatica 4, 2 (1975), 145-182.
6. Jensen, K., and Wirth, N. PASCAL User Manualand Report.
Lecture Notes in Computer Science, No. 18, Springer-Verlag, 1974.
7. Katz, S., and Manna, Z. A closer look at termination. Acta
Informatica 5, 4 (1975), 333-352.
8. London, R.L., Shaw, M., and Wulf, W.A. Abstraction and
verification in Alphard: a symbol table example. Tech. Reports,
Inform. Sci. Inst., U. of Southern California, Marina del Rey,
Calif., and Carnegie-Mellon U., Pittsburgh, Pa., 1976.
9. Luckham, D.C., and Suzuki, N. Automatic program verification
IV: Proof of termination within a weak logic of programs. Memo
AIM-269, Stanford University, Stanford, Calif., Oct. 1975.
10. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., and
Levin, M.I. LISP 1.5 Programmer's Manual. MIT Press, 1962.
11. Newell, A., Tonge, F., Feigenbaum, E.A., Green, B .F. Jr., and
Mealy, G.H. Information Processing Language-V Manual. Prentice-
Hall, Englewood Cliffs, N.J., Sec. Ed. 1964.
12. Shaw, M. Abstraction and verification in Alphard: design and
verification of a tree handler. Proc. Fifth Texas Conf. on Computing
Systems, 1976, pp. 86-94.
13. Shaw, M., Wulf, W.A., and London, R.L. Abstraction and
verification in Alphard: Iteration and generators. Tech. Reports,
Inform. Sci. Inst., U. of Southern California, Marina del Rey, Calif.,
and Carnegie-Mellon U., Pittsburgh, Pa., 1976.
14. Teitelman, W. Interlisp Reference Manual. Xerox Palo Alto
Res. Ctr., Palo Alto, Calif., 1975.
15. Weissman, C. LISP 1.5 Primer, Dickenson, Encino, Calif.,
1967.
16. Wulf, W.A., London, R.L., and Shaw, M. Abstraction and
verification in Alphard: Introduction to language and methodology.
Tech. Reports, Inform. Sci. Inst., U. of Southern California, Marina
del Rey, Calif., and Carnegie-Mellon U., Pittsburgh, Pa., 1976.
17. Wulf, W.A., London, R.L., and Shaw, M. An introduction to
the construction and verification of Alphard programs. 1EEE Trans.
on Software Eng. SE-2, 4 (Dec. 1976), 253-265.

564

Language Design for S.L. Graham
Reliable Software Editor

Abstraction
Mechanisms in CLU
Barbara Liskov, Alan Snyder,
Russell Atkinson, and Craig Schaffert
Massachusetts Institute of Technology

CLU is a new programming language designed to
support the use of abstractions in program
construction. Work in programming methodology has
led to the realization that three kinds of abstractions-
procedural, control, and especially data abstractions-
are useful in the programming process. Of these, only
the procedural abstraction is supported well by
conventional languages, through the procedure or
subroutine. CLU provides, in addition to procedures,
novel linguistic mechanisms that support the use of data
and control abstractions. This paper provides an
introduction to the abstraction mechanisms in CLU. By
means of programming examples, the utility of the
three kinds of abstractions in program construction is
illustrated, and it is shown how CLU programs may be
written to use and implement abstractions, The CLU
library, which permits incremental program
development with complete type checking performed
at compile time, is also discussed.

Key Words and Phrases: programming languages,
data types, data abstractions, control abstractions,
programming methodology, separate compilation

CR Categories: 4.0, 4.12, 4.20, 4.22

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N00014-75-C-0661, and in
part by the National Science Foundation under grant DCR74-21892.

A version of this paper was presented at the SIGPLAN/SIG-
OPS/SICSOFT Conference on Language Design for Reliable Soft-
ware, Raleigh, N.C., March 28-30, 1977.

Authors' address: Laboratory for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge,
MA 02139.

Communications August 1977
of Volume 20
the ACM Number 8

1. Introduct ion

The motivation for the design of the CLU program-
ing language was to provide programmers with a tool
that would enhance their effectiveness in constructing
programs of high quality-programs that are reliable
and reasonably easy to understand, modify, and main-
tain. CLU aids programmers by providing constructs
that support the use of abstractions in program design
and implementation.

The quality of software depends primarily on the
programming methodology in use. The choice of pro-
gramming language, however, can have a major impact
on the effectiveness of a methodology. A methodology
can be easy or difficult to apply in a given language,
depending on how well the language constructs match
the structures that the methodology deems desirable.
The presence of constructs that give a concrete form for
the desired structures makes the methodology more
understandable. In addition, a programming language
influences the way that its users think about program-
ming; matching a language to a methodology increases
the likelihood that the methodology will be used.

CLU has been designed to support a methodology
(similar to [6, 22]) in which programs are developed by
means of problem decomposition based on the recogni-
tion of abstractions. A program is constructed in many
stages. At each stage, the problem to be solved is how
to implement some abstraction (the initial problem is to
implement the abstract behavior required of the entire
program). The implementation is developed by envi-
sioning a number of subsidiary abstractions (abstract
objects and operations) that are useful in the problem
domain. Once the behavior of the abstract objects and
operations has been defined, a program can be written
to solve the original problem; in this program, the
abstract objects and operations are used as primitives.
Now the original problem has been solved, but new
problems have arisen, namely, how to implement the
subsidiary abstractions. Each of these abstractions is
considered in turn as a new problem; its implementa-
tion may introduce further abstractions. This process
terminates when all the abstractions introduced at var-
ious stages have been implemented or are present in
the programming language in use.

In this methodology, programs are developed incre-
mentally, one abstraction at a time. Further, a distinc-
tion is made between an abstraction, which is a kind of
behavior, and a program, or module, which implements
that behavior. An abstraction isolates use from imple-
mentation: an abstraction can be used without knowl-
edge of its implementation and implemented without
knowledge of its use. These aspects of the methodology
are supported by the CLU library, which maintains
information about abstractions and the CLU modules
that implement them. The library permits separate
compilation of modules with complete type checking at
compile time.

565

To make effective use of the methodology, it is
necessary to understand the kinds of abstractions that
are useful in constructing programs. In studying this
question, we identified an important kind of abstrac-
tion, the data abstraction, that had been largely ne-
glected in discussions of programming methodology.

A data abstraction [8, 12, 20] is used to introduce a
new type of data object that is deemed useful in the
domain of the problem being solved. At the level of
use, the programmer is concerned with the behavior of
these data objects, what kinds of information can be
stored in them and obtained from them. The program-
mer is not concerned with how the data objects are
represented in storage nor with the algorithms used to
store and access information in them. In fact, a data
abstraction is often introduced to delay such implemen-
tation decisions until a later stage of design.

The behavior of the data objects is expressed most
naturally in terms of a set of operations that are mean-
ingful for those objects. This set includes operations to
create objects, to obtain information from them, and
possibly to modify them. For example, push and pop
are among the meaningful operations for stacks, while
meaningful operations for integers include the usual
arithmetic operations. Thus a data abstraction consists
of a set of objects and a set of operations characterizing
the behavior of the objects.

If a data abstraction is to be understandable at an
abstract level, the behavior of the data objects must be
completely characterized by the set of operations. This
property is ensured by making the operations the only
direct means of creating and manipulating the objects.
One effect of this restriction is that, when defining an
abstraction, the programmer must be careful to include
a sufficient set of operations, since every action he
wishes to perform on the objects must be realized in
terms of this set.

We have identified the following requirements
that must be satisfied by a language supporting data
abstractions:

1. A linguistic construct is needed that permits a
data abstraction to be implemented as a unit. The
implementation involves selecting a representation for
the data objects and defining an algorithm for each
operation in terms of that representation.

2. The language must limit access to the represen-
tation to just the operations. This limitation is neces-
sary to ensure that the operations completely charac-
terize the behavior of the objects.

CLU satisfies these requirements by providing a
linguistic construct called a cluster for implementing
data abstractions. Data abstractions are integrated into
the language through the data type mechanism. Access
to the representation is controlled by type checking,
which is done at compile time.

In addition to data abstractions, CLU supports two
other kinds of abstractions: procedural abstractions and
control abstractions. A procedural abstraction per-

Communications August 1977
of Volume 20
the ACM Number 8

forms a computation on a set of input objects and
produces a set of output objects; examples of proce-
dural abstractions are sorting an array and computing a
square root. CLU supports procedural abstractions by
means of procedures, which are similar to procedures
in other programming languages.

A control abstraction defines a method for sequen-
cing arbitrary actions. All languages provide built-in
control abstractions; examples are the if s tatement and
the while statement. In addition, however, CLU allows
user definitions of a simple kind of control abstraction•
The method provided is a generalization of the repeti-
tion methods available in many programming lan-
guages. Frequently the programmer desires to perform
the same action for all the objects in a collection, such
as all characters in a string or all items in a set. CLU
provides a linguistic construct called an iterator for
defining how the objects in the collection are obtained.
The iterator is used in conjunction with the for state-
ment; the body of the for statement describes the action
to be taken.

The purpose of this paper is to illustrate the utility
of the three kinds of abstractions in program construc-
tion and to provide an informal introduction to CLU.
We do not at tempt a complete description of the lan-
guage; rather, we concentrate on the constructs that
support abstractions. The presence of these constructs
constitutes the most important way in which CLU dif-
fers from other languages. The language closest to
CLU is Alphard [24], which represents a concurrent
design effort with goals similar to our own. The design
of CLU has been influenced by Simula 67 [4] and to
a lesser extent by Pascal [23] and Lisp [15].

In the next section we introduce CLU and, by
means of a programming example, illustrate the use
and implementation of data abstractions. Section 3
describes the basic semantics of CLU. In Section 4, we
discuss control abstractions and more powerful kinds of
data abstractions. We present the CLU library in Sec-
tion 5. Section 6 briefly describes the current imple-
mentation of CLU and discusses efficiency considera-
tions. Finally, we conclude by discussing the quality of
CLU programs.

2. An Example of Data Abstraction

This section introduces the basic data abstraction
mechanism of CLU, the cluster. By means of an exam-
ple, we intend to show how abstractions occur naturally
in program design and how they are used and imple-
mented in CLU. In particular, we show how a data
abstraction can be used as structured intermediate
storage.

Consider the following problem: given some docu-
ment, we wish to compute, for each distinct word in the
document , the number of times the word occurs and its
frequency of occurrence as a percentage of the total

566

number of words. The document will be represented as
a sequence of characters. A word is any nonempty
sequence of alphabetic characters. Adjacent words are
separated by one or more nonalphabetic characters
such as spaces, punctuation, or newline characters. In
recognizing distinct words, the difference between up-
per and lower case letters should be ignored.

The output is also to be a sequence of characters,
divided into lines. Successive lines should contain an
alphabetical list of all the distinct words in the docu-
ment , one word per line. Accompanying each word
should be the total number of occurrences and the
frequency of occurrence. For example:

a 2 3 .509%
access 1 1.754%
and 2 3 .509%

Specifically, we are required to write the procedure
count_words, which takes two arguments: an instream
and an outstrearn. The former is the source of the
document to be processed, and the latter is the destina-
tion of the required output. The form of this procedure
will be

count_words = pro¢ (i: instream, o: outstream);

end count_words;

Note that count_words does not return any results; its
only effects are modifications of i (reading the entire
document) and of o (printing the required statistics).

Instream and outstream are data abstractions. An
instream i contains a sequence of characters. Of the
primitive operations on instreams, only two will be of
interest to us. Empty (i) returns true if there are no
characters available in i and returns false otherwise.
Next (i) removes the first character from the sequence
and returns it. Invoking the next operat ion on an empty
instream is an error . 1 An outstream also contains a
sequence of characters. The interesting operat ion on
outstreams is put_string (s, o), which appends the string
s to the existing sequence of characters in o.

Now consider how we might implement count_
words. We begin by deciding how to handle words. We
could define a new abstract data type word. However ,
we choose instead to use strings (a primitive CLU
type), with the restriction that only strings of lower case
alphabetic characters will be used. 2

Next we investigate how to scan the document•
Reading a word requires knowledge of the exact way in
which words occur in the input stream. We choose to
isolate this information in a procedural abstraction,
called next_word, which takes in the instream i and
returns the next word (converted to lower case charac-

1 The CLU error handling mechanism is discussed in [10].
2 Sometimes it is difficult to decide whether to introduce a new

data abstraction or to use an existing abstraction. Our decision to use
strings to represent words was made partly to shorten the presenta-
tion.

Communications August 1977
of Volume 20
the ACM Number 8

ters) in the document. If there are no more words,
next_word must communicate this fact to count_words.
A simple way to indic.ate that there are no more words
is by returning an "end of document" word, one that is
distinct from any other word. A reasonable choice for
the "end of document" word is the empty string.

It is clear that in count_words we must scan the
entire document before we can print our results, and
therefore we need some receptacle to retain informa-
tion about words between these two actions (scanning
and printing). Recording the information gained in the
scan and organizing it for easy printing will probably be
fairly complex. Therefore we defer such considerations
until later by introducing a data abstraction wordbag
with the appropriate properties. In particular, wordbag
provides three operations: create, which creates an
empty wordbag; insert, which adds a word to the word-
bag; and print, which prints the desired statistical infor-
mation about the words in the wordbag. 3

The implementation of count_words is shown in
Figure 1. The " % " character starts a comment, which
continues to the end of the line. The " - " character
stands for boolean negation. The notation variable:
type is used in formal argument lists and declarations
to specify the types of variables; a declaration may be
combined with an assignment specifying the initial
value of the variable. Boldface is used for reserved
,vords, including the names of primitiv e CLU types.

The count_words procedure declares four variables:
i, o, wb, and w. The first two denote the instream and
outstream that are passed as arguments to count_words.
The third, wb, denotes the wordbag used to hold the
words read so far, and the fourth, w, the word currently
being processed.

Operations of a data abstraction are named by a
compound form that specifies both the type and the
operation name. Three examples of operation calls
appear in count_words: wordbag$create(), word-
bag$insert (wb, w) and wordbag$print (wb, o). The
CLU system provides a mechanism that avoids conflicts
between names of abstractions; this mechanism is dis-
cussed in Section 5. However , operations of two differ-
ent data abstractions may have the same name; the
compound form serves to resolve this ambiguity. Al-
though the ambiguity could in most cases be resolved
by context, we have found in using CLU that the
compound form enhances the readability of programs.

The implementation of next_word is shown in Figure
2. The string$append operation creates a new string by
appending a character to the characters in the string
argument (it does not modify the string argument).
Note the use of the instream operations next and empty.
Note also that two additional procedures have been
used: alpha (c), which tests whether a character is
alphabetic or not, and lower_case (c), which returns the
lower case version of a character. The implementations

3 The print operation is not the ideal choice, but a better solution
requires the use of control abstractions. This solution is presented in
Section 4.

567

Fig. 1. The count_words procedure.

count_words = prne (i: ins t ream, o: outs t ream);
% create an empty wordbag
wb: wordbag := wordbag$create ();

% scan document , adding each word found to wb
w: string := next_word (i);
while w - = " " do

wordbag$insert (wb, w);
w := next_word (i);
end;

% print the wordbag
wordbag$print (wb, o);

end count_words;

Fig. 2. The next_word procedure.

next_word = proc (i: instream) returns (string);
c: char := ";

% scan for first alphabetic character
while ~a lpha (c) do

ff ins t ream$empty (i)
then return " ,
end,

c := ins t ream$next (i);
end;

% accumulate characters in word
w: string := " ";
while alpha (c) do

w := s t r lngSappend (w, c);
if ins t reamSempty (i)

then return (w);
end,

c := ins t ream$next (i);
end;

return (w); % the nonalphabet ic character c is lost

end next_word;

of these procedures are not shown in the paper•
Now we must implement the type wordbag. The

cluster will have the form

wordbag = cluster is create, insert, print;

end wordbag;

This form expresses the idea that the data abstraction is
a set of operations as well as a set of objects. The
cluster must provide a representation for objects of the
type wordbag and an implementation for each of the
operations. We are free to choose from the possible
representations the one best suited to our use of the
wordbag cluster•

The representat ion that we choose should allow
reasonably efficient storage of words and easy printing,
in alphabetic order, of the words and associated statis-
tics. For efficiency in computing the statistics, main-
taining a count of the total number of wolds in the
document would be helpful• Since the total number of
words in the document is probably much larger than the
number of distinct words, the representation of a word-
bag should contain only one " i tem" for each distinct
word (along with a multiplicity count), rather than one
" i tem" for each occurrence• This choice of representa-
tion requires that, at each insertion, we check whether

Communica t ions Augus t 1977
of Volume 20
the A C M Number 8

the new word is already present in the wordbag. We
would like a representation that allows the search for a
matching " i tem" and the insertion of a not previously
present " i tem" to be efficient. A binary tree represen-
tation [9] fits our requirements nicely.

Thus the main part of the wordbag representation
consists of a binary tree. The binary tree is another data
abstraction, wordtree. The data abstraction wordtree
provides operations very similar to those of wordbag:
create () returns an empty wordtree; insert (tr, w) re-
turns a wordtree containing all the words in the word-
tree tr plus the additional word w (the wordtree tr may
be modified in the process); and print (tr, n, o) prints
the contents of the wordtree tr in alphabetic order on
outstream o along with the number of occurrences and
the frequency (based on a total of n words).

The implementation of wordbag is given in Figure
3. Following the header, we find the definition of the
representation selected for wordbag objects:

rep = record [contents: wordtree, total: int];

The reserved type identifier rep indicates that the type
specification to the right of the equal sign is the repre-
senting type for the cluster. We have defined the repre-
sentation of a wordbag object to consist of two pieces: a
wordtree, as explained above, and an integer, which
records the total number of words in the wordbag.

A CLU record is an object with one or more named
components. For each component name, there is an
operation to select and an operation to set the corre-
sponding component. The operation get~n (r) returns
the n component of the record r (this operation is
usually abbreviated r.n). The operation put_n (r, x)
makes x the n component of the record r (this operation
is usually abbreviated r.n := x, by analogy with the
assignment statement). A new record is created by an
expression of the form typeS{namer: valuer }.

There are two different types associated with any
cluster: the abstract type being defined (wordbag in
this case) and the representation type (the record).
Outside of the cluster, type checking ensures that a
wordbag object will always be treated as such. In par-
ticular, the ability to convert a wordbag object into its
representation is not provided (unless one of the word-
bag operations does so explicitly).

Inside the duster , however, it is necessary to view a
wordbag object as being of the representation type,
because the implementations of the operations are de-
fined in terms of the representation. This change of
viewpoint is signalled by having the reserved word cvt
appear as the type of an argument (as in the insert and
print operations). Cvt may also appear as a return type
(as in the create operation); here it indicates that a
returned object will be changed into an object of ab-
stract type. Whether cvt appears as the type of an
argument or as a return type, it stipulates a "conver-
sion" of viewpoint between the external abstract type

Fig. 3, The wordbag cluster.

wordbag -- duster is
create, % create an empty bag
insert, % insert an element
print; % print contents of bag

rep = record [contents: wordtree, total: int];
create = proc () returns (cvt);

return (rep${contents: wordtree$create () , total: 0});
end create;

insert = proc (x: cvt, v: string);
x.contents := wordtree$insert (x.contents, v);
x.total := x.total + 1;
end insert;

print = proc (x: cvt, o: outstream);
wordtree$print (x.contents, x.total, o);
end print;

end wordbag;

and the internal representation type. Cvt can be used
only within a cluster, and conversion can be done only
between the single abstract type being defined and the
(single) representation type .4

The procedures in wordbag are very simple. Create
builds a new instance of the rep by use of the record
constructor

rep${contents: wordtree$create () , total: 0}

Here total is initialized to 0 and contents to the empty
wordtree (by calling the create operation of wordtree).
This rep object is converted into a wordbag object as it
is being returned. Insert and print are implemented
directly in terms of wordtree operations.

The implementation of wordtree is shown in Figure
4. In the wordtree representation, each node contains a
word and the number of times that word has been
inserted into the wordbag, as well as two subtrees. For
any particular node, the words in the "lesser" subtree
must alphabetically precede the word in the node, and
the words in the "greater" subtree must follow the
word in the node. This information is described by

n o d e = record [va lue : s tr ing , count : int ,
lesser: wordtree, greater: wordtree];

which defines "node" to b e ' a n abbreviation for the
information following the equal sign. (The reserved
word rep is used similarly as an abbreviation for the
representation type .)

Now consider the representation of wordtrees. A
nonempty wordtree can be represented by its top node.
An empty wordtree, however, contains no information.
The ideal type to represent an empty wordtree is the
CLU type null, which has a single data object nil. So
the representation of a wordtree should be either a
node or nil. This representation is expressed by

rep = o n e o f [empty: null, non_empty: node];

Just as the record is the basic CLU mechanism to

4 Cvt corresponds to Morris ' seal and unseal [16] except that cvt
represents a change in viewpoint only; no computat ion is required.

5 6 8 Communicat ions August 1977
of Volume 20
the ACM Number 8

form an object that is a collection of other objects, the
oneof is the basic CLU mechanism to form an object
that is "one of" a set of alternatives. Oneof is CLU ' s
method of forming a discriminated union, and is some-
what similar to a variant component of a record in
Pascal [23].

An object of the type oneof [sl: T1 . . . s~: Tn] can
be thought of as a pair. The " tag" component is an
identifier f rom the set {sl • • • s~}. The "value" compo-
nent is an object of the type corresponding to the tag.
That is, if the tag component is ~, then the value is
some object of type Ti.

Objects of type oneof [sl: T1 . . . Sn: Tn] are created
by the operat ions make_s~(x), each of which takes an
object x of type Ti and returns the pair (si, x). Because
the type of the value component of a oneof object is not
known at compile time, allowing direct access to the
value component could result in a run-time type error
(e.g. assigning an object to a variable of the wrong
type). To eliminate this possibility, we require the use
of a special tagease statement to decompose a oneof
object:

tagcase e
tag sl (idl: TO: statements . . .

tag Sn (idn: Tn): statements . . .
end;

This s ta tement evaluates the expression e to obtain an
object of type oneof [s~: T1 . . . Sn: Tn]. If the tag is s~,
then the value is assigned to the new variable idi and
the statements following the ith alternative are exe-
cuted. The variable idi is local to those statements . If,
for some reason, we do not need the value, we can omit
the parenthesized variable declaration.

The reader should now know enough to understand
Figure 4. Note , in the create operat ion, the use of the
construction operat ion make_empty of the representa-
tion type of wordtree (the discriminated union o n e o f
[empty: null, nonempty: node]) to create the empty
wordtree. The tagcase statement is used in both insert
andprint. Note that if insert is given an empty wordtree,
it creates a new top node for the returned value, but if
insert is given a nonempty wordtree, it modifies the
given wordtree and returns i t ? The insert operat ion
depends on the dynamic allocation of space for newly
created records (see Section 3).

The print operat ion uses the obvious recursive de-
scent. It makes use of procedure print_word (w, c, t, o),
which generates a single line of output on o consisting
of the word w, the count c, and the frequency of
occurrence derived from c and t. The implementat ion
of print_word has been omitted.

We have now completed our first discussion of the

5 It is necessary for insert to return a value in addition having a
side effect because in the case of an empty wordtree argument side
effects are not possible. Side effects are not possible because of the
representation chosen for the empty wordtree and because of the
CLU parameter passing mechanism (see Section 3).

Fig. 4. The wordtree cluster.

wordtree = dus te r is
create, % create empty contents
insert, % add item to contents
print; % print contents
node = record [value: string, count: int•

lesser: wordtree• greater: wordtree],
rep = oneof [empty: null, non_empty: node];

create = proc () returns (twt);
return (rep$make_empty (nil));
end create;

insert = proc (x: cvt• v: string) returns (cvt);
tagcase x

tag empty:
n: node := nodeS{value: v• count: 1,

lesser: wordtree$create () ,
greater: wordtree$create ()};

return (rep$make_non_empty (n));
tag non_empty (n: node):

if v = n.value
then n.count := n.count + 1;

elseif v < n.value
then n.lesser := wordtree$insert (n.lesser, v);

else n.greater := wordtree$insert (n.greater. v);
end;

return (x);
end;

end insert;
print = proc (x: cvt• total: int, o: outstream);

tagcase x
tag empty: ;
tag non_empty (n: node):

wordtree$print (n.lesser• total, o);
print,word (n.value. n. count, total, o);
wordtree$print (n.greater, total, o);

end;
end print;

end wordtree;

court_words procedure. We return to this problem in
Section 4, where we present a superior solution.

3 . Semant i c s

All languages present their users with some model
of computat ion. This section describes those aspects of
CLU semantics that differ f rom the common Algol-like
model. In particular, we discuss CLU's notions of ob-
jects and variables and the definitions of assignment
and argument passing that follow from these notions.
We also discuss type correctness.

3 .1 Objec t s and Variables
The basic elements of CLU semantics are objects

and variables• Objects are the data entities that are
created and manipulated by C L U programs. Variables
are just the names used in a program to refer to objects.

In CLU, each object has a particular type, which
characterizes its behavior. A type defines a set of oper-
ations that create and manipulate objects of that type.
An object may be created and manipulated only via the
operat ions of its type.

An object may refer to objects. For example , a

569 Communications August 1977
of Volume 20
the ACM Number 8

record object refers to the objects that are the compo-
nents of the record. This notion is one of logical, not
physical, containment. In particular, it is possible for
two distinct record objects to refer to (or share) the
same component object. In the case of a cyclic struc-
ture, it is even possible for an object to "contain" itself.
Thus it is possible to have recursive data structure
definitions and shared data objects without explicit
reference types. The wordtree type described in the
previous section is an example of a recursively defined
data structure. (This notion of object is similar to that
in Lisp.)

CLU objects exist independently of procedure acti-
vations. Space for objects is allocated from a dynamic
storage area as the result of invoking constructor oper-
ations of certain primitive CLU types. For example, the
record constructor is used in the implementation of
wordbag (Figure 3) to acquire space for new wordbag
objects. In theory, all objects continue to exist forever.
In practice, the space used by an object may be re-
claimed when the object is no longer accessible to any
CLU program?

An object may exhibit time-varying behavior. Such
an object, called a mumble object, has a state which
may be modified by certain operations without chang-
ing the identity of the object. Records are examples of
mutable objects. The record update operations (put_s
(r, v), written as r.s := v in the examples), change the
state of record objects and therefore affect the behavior
of subsequent applications of the select operations
(get_s (r), written as r.s). The wordbag and wordtree
types are additional examples of types with mutable
objects.

If a mutable object m is shared by two other objects
x and y, then a modification to m made via x will be
visible when m is examined via y. Communication
through shared mutable objects is most beneficial in the
context of procedure invocation, described below.

Objects that do not exhibit time-varying behavior
are called immutable objects, or constants. Examples of
constants are integers, booleans, characters, and
strings. The value of a constant object can not be
modified. For example, new strings may be computed
from old ones, but existing strings do not change.
Similarly, none of the integer operations modify the
integers passed to them as arguments.

Variables are names used in CLU programs to de-
note particular objects at execution time. Unlike varia-
bles in many common programming languages, which
are objects that contain values, CLU variables are sim-
ply names that the programmer uses to refer to objects.
As such, it is possible for two variables to denote (or
share) the same object. CLU variables are much like
those in Lisp and are similar to pointer variables in
other languages. However, CLU variables are not ob-
jects; they cannot be denoted by other variables or

6 An object is accessible if it is denoted by a variable of an active
procedure or is a component of an accessible object.

referred to by objects. Thus variables are completely
private to the procedure in which they are declared
and cannot be accessed or modified by any other
procedure.

3.2 Assignment and Procedure Invocation
The basic actions in CLU are assignment and proce-

dure invocation. The assignment primitive x :-- E,
where x is a variable and E is an expression, causes x to
denote the object resulting from the evaluation of E.
For example, if E is a simple variable y, then the
assignment x := y causes x to denote the object denoted
by y. The object is not copied; after the assignment is
performed, it will be shared by x and y. Assignment
does not affect the state of any object. (Recall that
r.s :-- v is not a true assignment, but an abbreviation for
put_s (r, v).)

Procedure invocation involves passing argument
objects from the caller to the called procedure and
returning result objects from the procedure to the
caller. The formal arguments of a procedure are con-
sidered to be local variables of the procedure and are
initialized, by assignment, to the objects resulting from
the evaluation of the argument expressions. Thus argu-
ment objects are shared between the caller and the
called procedure. A procedure may modify mutable
argument objects (e.g. records), but of course it cannot
modify immutable ones (e.g. integers). A procedure
has no access to the variables of its caller.

Procedure invocations may be used directly as state-
ments; those that return objects may also be used
as expressions. Arbitrary recursive procedures are
permitted.

3.3 Type Correctness
Every variable in a CLU module must be declared;

the declaration specifies the type of object that the
variable may denote. All assignments to a variable
must satisfy the variable's declaration. Because argu-
ment passing is defined in terms of assignment, the
types of actual argument objects must be consistent
with the declarations of the corresponding formal
arguments.

These restrictions, plus the restriction that only the
code in a cluster may use evt to convert between the
abstract and representation types, ensure that the be-
havior of an object is indeed characterized completely
by the operations of its type. For example, the type
restrictions ensure that the only modification pos-
sible to a record object that represents a wordbag (Fig-
ure 3) is the modification performed by the insert
operation.

Type checking is performed on a module by module
basis at compile time (it could also be done at run
time). This checking can catch all type errors-even
those involving intermodule references-because the
CLU library maintains the necessary type information
for all modules (see Section 5).

570 Communications August 1977
of Volume 20
the ACM Number 8

4. More Abstraction Mechanisms

In this section we continue our discussion of ab-
straction mechanisms in CLU. A generalization of the
wordbag abstraction, called sorted_ bag, is presented as
an illustration of parameterized clusters, which are a
means for implementing more generally applicable data
abstractions. The presentation of sorted_bag is also
used to motivate the introduction of a control abstrac-
tion called an iterator, which is a mechanism for incre-
mentally generating the elements of a collection of
objects. Finally, we show an implementation of the
sorted_bag abstraction and illustrate how sorted_bag
can be used in implementing count_words.

4.1 Properties of the Sorted_bag Abstraction
In the count_words procedure given earlier, a data

abstraction called wordbag was used. A wordbag object
is a collection of strings, each with an associated count.
Strings are inserted into a wordbag object one at a
time. Strings in a wordbag object may be printed in
alphabetical order , each with a count of the number of
times it was inserted.

Although wordbag has properties that are specific
to the usage in count_words, it also has properties in
common with a more general abstraction, sorted_bag.
A bag is similar to a set (it is sometimes called a
multiset) except that an item can appear in a bag many
times. For example, if the integer 1 is inserted in the set
{1, 2}, the result is the set {1, 2}, but if 1 is inserted
in the bag {1, 2}, the result is the bag {1, 1, 2}. A
sorted_bag is a bag that affords access to the items it
contains according to an ordering relation on the items.

The concept of a sorted_bag is meaningful not only
for strings but for many types of items. Therefore we
would like to parameterize the sorted_bag abstraction,
the parameter being the type of item to be collected in
the sorted_bag objects.

Most programming languages provide built-in para-
meterized data abstractions. For example, the concept
of an array is a parameterized data abstraction, An
example of a use of arrays in Pascal is

array 1..n of integer

These arrays have two parameters, one specifying the
array bounds (1..n) and one specifying the type of
element in the array (integer). In CLU we provide
mechanisms allowing user-defined data abstractions
(like sorted_bag) to be parameterized.

In the sorted_bag abstraction, not all types of items
make sense. Only types that define a total ordering on
their objects are meaningful since the sorted_bag ab-
straction depends on the presence of this ordering. In
addition, information about the ordering must be ex-
pressed in a way that is useful for programming. A
natural way to express this information is by means of
operations of the item type. Therefore we require that
the item type provide less than and equal operations

571

(called It and equal). This constraint is expressed in the
header for sorted_bag:

sorted_bag = duster [t: type] is create, insert
where t has

It, equal: proctype (t, t) returns (bool);

The item type t is a formal parameter of the sorted_bag
cluster; whenever the sorted_bag abstraction is used,
the item type must be specified as an actual parameter,
e.g.

sorted_ bag [string]

The information about required operations informs
the programmer about legitimate uses of sorted_bag.
The compiler will check each use of sorted_bag to
ensure that the item type provides the required opera-
tions. The where clause specifies exactly the informa-
tion that the compiler can check. Of course, more is
assumed about the item type t than the presence of
operations with appropriate names and functionalities:
these operations must also define a total ordering on
the items. Although we expect formal and complete
specifications for data abstractions to be included in the
CLU library eventually, we do not include in the CLU
language declarations that the compiler cannot check.
This point is discussed further in Section 7.

Now that we have decided to define a sorted_bag
abstraction that works for many item types, we must
decide what operations this abstraction provides. When
an abstraction (like wordbag) is written for a very
specific purpose, it is reasonable to have some special-
ized operations. For a more general abstraction, the
operations should be more generally useful.

The print operation is a case in point. Printing is
only one possible use of the information contained in a
sorted_bag. It was the only use in the case of wordbag,
so it was reasonable to have a print operation. How-
ever, if sorted_bags are to be generally useful, there
should be some way for the user to obtain the elements
of the sorted_bag; the user can then perform some
action on the elements (for example, print them).

What we would like is an operation on sorted_bags
that makes all of the elements available to the caller in
increasing order. One possible approach is to map the
elements of a sorted_bag into a sequence object , a
solution potentially requiring a large amount of space.
A more efficient method is provided by CLU and is
discussed below. This solution computes the sequence
one element at a time, thus saving space. If only part of
the sequence is used (as in a search for some element) ,
then execution time can be saved as well.

4.2 Control Abstractions
The purpose of many loops is to perform an action

on some or all of the objects in a collection. For such
loops, it is often useful to separate the selection of the
next object from the action performed on that object.

Communications August 1977
of Volume 20
the ACM Number 8

Fig. 5. Use and definition of a simple iterator.

count_numeric = proc (s: string) returns (int);
count: int := O;
for c: char in string_chars (s) do

ff charis_numeric (c)
then count := count + 1;
end;

end;
return (count);
end count_numeric;

string_chars = iter (s: string) yields (char);
index: int := 1;
limit: int := string$size (s);
while index < = limit do

yield (string$fetch (s, index));
index := index + 1;
end;

end string_chars;

CLU provides a control abstraction that permits a com-
plete decomposit ion of the two activities. The for state-
ment available in many programming languages pro-
vides a limited ability in this direction: it iterates over
ranges of integers. The CLU for statement can iterate
over collections of any type of object . The selection of
the next object in the collection is done by a user-
defined iterator. The iterator produces the objects in
the collection one at a time (the entire collection need
not physically exist); each object is consumed by the for
statement in turn.

Figure 5 gives an example of a simple i terator called
string_chars, which produces the characters in a string
in the order in which they appear. This i terator uses
string operations size(s), which tells how many charac-
ters are in the string s, and fetch (s, n), which returns
the nth character in the string s (provided the integer n
is greater than zero and does not exceed the size of the
string) .r

The general form of the CLU for statement is

for declarations in iterator_invocation do
body
end;

An example of the use of the for statement occurs in
the count_numeric procedure (see Figure 5), which
contains a loop that counts the number of numeric
characters in a string. Note that the details of how the
characters are obtained from the string are entirely
contained in the definition of the iterator.

Iterators work as follows: A for statement initially
invokes an iterator, passing it some arguments. Each
time a yield statement is executed in the iterator, the
objects yielded 8 are assigned to the variables declared
in the for statement (following the reserved word for)

T A while loop is used in the implementation of string_chars so
that the example will be based on familiar concepts. In actual prac-
tice, such a loop would be written by using a for statement invoking a
primitive iterator.

8 Zero or more objects may be yielded, but the number and types
of objects yielded each time by an iterator must agree with the
number and types of variables in a for statement using the iterator.

in corresponding order, and the body of the for state-
ment is executed. Then the iterator is resumed at the
statement following the yield statement, in the same
environment as when the objects were yielded. When
the iterator terminates, by either an implicit or explicit
return, the invoking for statement terminates. The iter-
ation may also be prematurely terminated by a return
in the body of the for statement.

For example, suppose that string_chars is invoked
with the string "a3" . The first character yielded is 'a ' .
At this point, within string_chars, index = 1 and limit =
2. Next the body of the for statement is per formed.
Since the character 'a' is not numeric, count remains at
0. Next string_chars is resumed at the statement after
the yield statement, and when resumed, index = 1 and
limit = 2. Then index is assigned 2, and the character
'3' is selected from the string and yielded. Since '3' is
numeric, count becomes 1. Then string_chars is re-
sumed, with index = 2 and limit = 2, and index is
incremented, which causes the while loop to terminate.
The implicit return terminates both the i terator and the
for statement, with control resuming at the s tatement
after the for statement, and count = 1.

While iterators are useful in general, they are espe-
cially valuable in conjunction with data abstractions
that are collections of objects (such as sets, arrays, and
sorted_bags). Iterators afford users of such abstractions
access to all objects in the collection without exposing
irrelevant details. Several i terators may be included in a
data abstraction. When the order of obtaining the ob-
jects is important, different iterators may provide dif-
ferent orders.

4.3 Implementation and Use of Sorted_bag
Now we can describe a minimal set of operations for

sorted_bag. The operations are create, insert, size, and
increasing. Create, insert, and size are procedural ab-
stractions that, respectively, create a sorted_bag, insert
an item into a sorted_bag, and give the number of items
in a sorted_bag. Increasing is a control abstraction that
produces the items in a sorted_bag in increasing order;
each item produced is accompanied by an integer rep-
resenting the number of times the item appears in the
sorted_bag. Note that other operations might also be
useful for sorted_bag, for example, an i terator yielding
the items in decreasing order. In general, the definer of
a data abstraction can provide as many operations as
seems reasonable.

In Figure 6, we give an implementation of the
sorted_bag abstraction. It is implemented by using a
sorted binary tree, just as wordbag was implemented.
Thus a subsidiary abstraction is necessary. This abstrac-
tion, called tree, is a generalization of the wordtree
abstraction (used in Section 2), which has been
parameterized to work for all ordered types. An imple-
mentation of tree is given in Figure 7. Notice that both
the tree abstraction and the sorted_bag abstraction
place the same constraints on their type parameters .

572 Communications August 1977
of Volume 20
the ACM Number 8

Fig. 6. The sorted_bag cluster.

sorted_bag = duster [t: type] is create, insert, size, increasing
where t has equal, It: proctype (t, t) returns (bool);
rep = record [contents: tree[t], total: int];

create = proc () returns (cvt);
return (rep${contents: tree[t]$create () , total: 0});
end create;

insert = proc (sb: cvt, v: t);
sb.contents := tree[t]$insert (sb.contents, v);
sb.total := sb.total + 1;
end insert;

size = proc (sb: cvt) returns (int);
return (sb.total);
end size;

increasing = i t e r (sb: cvt) yields (t, int);
for item: t, count: int

in tree[t]$increasing (sb.contents) do
yield (item, count);
end;

end increasing;
end sorted_bag;

Fig. 7. The tree cluster.

tree = duster [t: type] is create, insert, increasing
where t has equal, It: proctype (t, t) returns (bool);
node = record [value: t, count: int,

lesser: tree[t], greater: tree[t]];
rep = oneof [empty: null, non_empty: node];

create = proc () returns (cvt);
return (rep$make_empty (nil));
end create;

insert = proc (x: cvt, v: t) returns (cvt);
tagcase x

tag empty:
n: node := nodeS{value: v, count: 1,

lesser: tree[t]$create () ,
greater: tree[t]$create ()};

return (rep$make__non_empty (n));
tag non_empty (n: node):

if t$cqual (v, n.value)
then n.count := n.count + 1;

elseif t$1t (v, n.value)
then n.lesser := tree[t]$insert (n.lesser, v);

else n.greater := tree[t]$insert (n.greater, v);
end;

return (x);
end;

end insert;
increasing --- iter (x: ¢vt) yields (t, int);

tagcase x
tag empty: ;
tag non_empty (n: node):

for item: t, count: int
in tree[t]$increasing (n.lesser) do

yield (item, count);
end;

yield (n.value, n.count);
for item: t, count: int

in' tree [t]$increasing (n.greater) do
yield (item, count);
end;

end;
end increasing;

end tree;

573

An important feature of the sorted_bag and tree
clusters is the way that the cluster parameter is used in
places where the type string was used in wordbag and
wordtree. This usage is especially evident in the imple-
mentation of tree. For example, tree has a representa-
tion that stores values of type t: the value component of
a node must be an object of type t.

In the insert operation of tree, the It and equal
operations of type t are used. We have used the com-
pound form, e.g. t$equal (v, n .value), to emphasize that
the equal operation of t is being used. The short form,
v = n.value, could have been used instead.

The increasing i terator of tree works as follows: first
it yields all items in the current tree that are less than
the item at the top node; the items are obtained by a
recursive use of itself, passing the lesser subtree as an
argument. Next it yields the contents of the top node,
and then it yields all items in the current tree that are
greater than the item at the top node (again by a
recursive use of itself). In this way it performs a com-
plete walk over the tree, yielding the values at all
nodes, in increasing order.

Finally, we show in Figure 8 how the original proce-
dure count_words can be implemented in terms of
sorted_bag. Note that the count_words procedure now
uses sorted_bag [string] instead of wordbag.
Sorted_bag[string] is legitimate since the type string
provides both It and equal operations. Note that two for
statements are used in count_words. The second for
statement prints the words in alphabetic order, using
the increasing i terator of sorted_bag. The first for state-
ment inserts the words into the sorted_bag; it uses an
iterator

words = iter (i: instream) yields (string);

end words;

The definition of words is left as an exercise for the
reader.

5. The CLU Library

So far, we have shown CLU modules as separate
pieces of text, without explaining how they are bound
together to form a program. This section describes the
CLU library, which plays a central role in supporting
intermodule references.

The CLU library contains information about ab-
stractions. The library supports incremental program
development , one abstraction at a time, and, in addi-
tion, makes abstractions that are defined during the
construction of one program available as a basis for
subsequent program development. The information in
the library permits the separate compilation of single
modules with complete type checking of all external
references (such as procedure invocations).

The structure of the library derives from the funda-

Communications August 1977
of Volume 20
the ACM Number 8

mental distinction between abstractions and implemen-
tations. For each abstraction, there is a description unit
which contains all system-maintained information
about that abstraction. Included in the description unit
are zero or more modules that implement the abstrac-
tion .9

The most important information contained in a de-
scription unit is the abstraction's interface specification,
which is that information needed to type-check uses of
the abstraction. For procedural and control abstrac-
tions, this information consists of the number and types
of parameters, arguments, and output values, plus any
constraints on type parameters (i.e. required opera-
tions, as described in Section 4). For data abstractions,
it includes the number and types of parameters, con-
straints on type parameters, and the name and interface
specification of each operation.

An abstraction is entered in the library by submit-
ting the interface specification; no implementations are
required. In fact, a module can be compiled before any
implementations have been provided for the abstrac-
tions that it uses; it is necessary only that interface
specifications have been given for those abstractions.
Ultimately, there can be many implementations of an
abstraction; each implementation is required to satisfy
the interface specification of the abstraction. Because
all uses and implementations of an abstraction are
checked against the interface specification, the actual
selection of an implementation can be delayed until just
before (or perhaps during) execution. We imagine a
process of binding together modules into programs,
prior to execution, at which time this selection would
be made.

An important detail of the CLU system is the
method by which CLU modules refer to abstractions.
To avoid problems of name conflicts that can arise in
large systems, the names used by a module to refer to
abstractions can be chosen to suit the programmer's
convenience. When a module is submitted for compila-
tion, its external references must be bound to descrip-
tion units so that type checking can be performed. The
binding is accomplished by constructing an association
list, mapping names to description units, which is
passed to the compiler along with the source code when
compiling the module. The mapping in the association
list is stored by the compiler in the library as part of the
module. A similar process is involved in entering inter-
face specifications of abstractions, as these will include
references to other (data) abstractions.

When the compiler type-checks a module, it uses
the association list to map the external names in the
module to description units and then uses the interface
specifications in those description units to check that
the abstractions are used correctly. The type correct-
ness of the module thus depends upon the binding of

9 Other information that may be stored in the library includes
information about relationships among abstractions, as might be
expressed in a module interconnection language [5, 21].

Fig. 8. The count_words procedure using iterators.

count_words = proc (i: instream, o: outstream);
wordbag = sorted_bag[string];
% create an empty wordbag
wb: wordbag := wordbag$create ();
% scan document, adding each word found to wb
for word: string in words (i) do

wordbag$insert (wb, word);
end;

% print the wordbag
total: int := wordbag$size (wb);
for w: string, count: int in wordbag$increasing (wb) do

print_word (w, count, total, o);
end;

end count_words;

names to description units and the interface specifica-
tions in those description units, and could be invali-
dated if changes to the binding or the interface specifi-
cations were subsequently made. For this reason, the
process of compilation permanently binds a module to
the abstractions it uses, and the interface description of
an abstraction, once defined, is not allowed to change.
(Of course, a new description unit can be created to
describe a modified abstraction.)

6. Implementation

This section briefly describes the current implemen-
tation of CLU and discusses its efficiency.

The implementation is based on a decision to repre-
sent all CLU objects by object descriptors, which are
fixed-size values containing a type code and some type-
dependent information. 1° In the case of mutable types,
the type-dependent information is a pointer to a sepa-
rately allocated area containing the state information.
For constant types, the information either directly con-
tains the value (if the value can be encoded in the
information field, as for integers, characters, and
booleans) or contains a pointer to separately allocated
space (as for strings). The type codes are used by the
garbage collector to determine the physical representa-
tion of objects so that the accessible objects can be
traced; they are also useful for supporting program
debugging.

The use of fixed-size object descriptors allows varia-
bles to be fixed-size cells. Assignment is efficient: the
object descriptor resulting from the evaluation of the
expression is simply copied into the variable. In addi-
tion, a single size for variables facilitates the separate
compilation of modules and allows most of the code of
a parameterized module to be shared among all instan-
tiations of the module. The actual parameters are made
available to this code by means of a small parameter-
dependent section, which is initialized prior to execu-
tion.

10 Object descriptors are similar to capabilities [11].

574 Communications August 1977
of Volume 20
the ACM Number 8

Procedure invocation is relatively efficient. A single
program stack is used, and argument passing is as
efficient as assignment. Iterators are a form of corou-
tine; however, their use is sufficiently constrained that
they are implemented using just the program stack.
Using an iterator is therefore only slightly more expen-
sive than using a procedure.

The data abstraction mechanism is not inherently
expensive. No execution-time type checking is neces-
sary. Furthermore, the type conversion implied by cvt
is merely a change in the view taken of an object's type
and does not require any computation.

A number of optimization techniques can be ap-
plied to a collection of modules if one is willing to give
up the flexibility of separate compilation. The most
effective such optimization is the inline substitution of
procedure (and iterator) bodies for invocations [18].
The use of data abstractions tends to introduce extra
levels of procedure invocations that perform little or no
computation. As an example, consider the word-
bag$insert operation (Figure 3), which merely invokes
the wordtree$insert operation and increments a
counter. If data abstractions had not been used, these
actions would most likely have been performed directly
by the count_words procedure. The wordbag$insert op-
eration is thus a good candidate for being compiled
inline. Once inline substitution has be_en performed,
the increase in context will enhance the effectiveness of
conventional optimization techniques [1-3].

7. Discussion

Our intent in this paper has been to provide an
informal introduction to the abstraction mechanisms in
CLU. By means of programming examples, we have
illustrated the use of data, procedural, and control
abstractions and have shown how CLU modu!es are
used to implement these abstractions. We have not
attempted to provide a complete description of CLU,
but, in the course of explaining the examples, most
features of the language have appeared. One important
omission is the CLU exception handling mechanism
(which does support abstractions); this mechanism is
described in [10].

In addition to describing constructs that support
abstraction, previous sections have covered a number
of other topics. We have discussed the semantics of
CLU. We have described the organization of the CLU
library and discussed how it supports incremental pro-
gram development and separate compilation and type
checking of modules. Also we have described our cur-
rent implementation and discussed its efficiency.

In designing CLU, our goal was to simplify the task
of constructing reliable software that is reasonably easy
to understand, modify, and maintain. It seems appro-
priate, therefore, to conclude this paper with a discus-
sion of how CLU contributes to this goal.

The quality of any program depends upon the skill
of the designer. In CLU programs, this skill is reflected
in the choice of abstractions. In a good design, abstrac-
tions will be used to simplify the connections between
modules and to encapsulate decisions that are likely to
change [17]. Data abstractions are particularly valuable
for these purposes. For example, through the use of a
data abstraction, modules that share a system database
rely only on its abstract behavior as defined by the
database operations. The connections among these
modules are much simpler than would be possible if
they shared knowledge of the format of the database
and the relationship among its parts. In additioo, the
database abstraction can be reimplemented without
affecting the code of the modules that use it. CLU
encourages the use of data abstractions and thus aids
the programmer during program design.

The benefits arising from the use of data abstrac-
tions are based on the constraint, inherent in CLU and
enforced by the CLU compiler, that only the opera-
tions of the abstraction may access the representations
of the objects. This constraint ensures that the distinc-
tion made in CLU between abstractions and implemen-
tations applies to data abstractions as well as to proce-
dural and control abstractions.

The distinction between abstractions and imple-
mentations eases program modification and mainte-
nance. Once it has been determined that an abstraction
must be reimplemented, CLU guarantees that the code
of all modules using that abstraction will be unaffected
by the change. The modules need not be repro-
grammed or even recompiled; only the process of se-
lecting the implementation of the abstraction must be
redone. The problem of determining what modules
must be changed is also simplified because each module
has a well-defined purpose- to implement an abstrac-
t i on -and no other module can interfere with that
purpose.

Understanding and verification of CLU programs is
made easier because the distinction between abstrac-
tions and implementations permits this task to be de-
composed. One module at a time is studied to deter-
mine that it implements its abstraction. This study re-
quires understanding the behavior of the abstractions it
uses, but it is not necessary to understand the modules
implementing those abstractions. Those modules can
be studied separately.

A promising way to establish the correctness of a
program is by means of a mathematical proof. For
practical reasons, proofs should be performed (or at
least check.ed) by a verification system, since the proc-
ess of constructing a proof is tedious and error-prone.
Decomposition of the proof is essential for program
proving, which is practical only for small programs (like
CLU modules). Note that when the CLU compiler
does type checking, it is, in addition to enforcing the
constraint that permits the proof to be decomposed,
also performing a small part of the actual proof.

575 Communications August 1977
of Volume 20
the ACM Number 8

We have included as declarations in CLU just the
information that the compiler can check with reasona-
ble efficiency. We believe that the other information
required for proofs (specifications and assertions)
should be expressed in a separate "specification" lan-
guage. The properties of such a language are being
studied [7, 13, 14, 19]. We intend eventually to add
formal specifications to the CLU system; the library is
already organized to accommodate this addition. At
that time various specification language processors
could be added to the system.

We believe that the constraints imposed by CLU
are essential for practical as well as theoretical reasons.
It is true that data abstractions can be used in any
language by establishing programming conventions to
protect the representations of objects. However, con-
ventions are no substitute for enforced constraints. It is
inevitable that the conventions will be viola ted-and
are likely to be violated just when they are needed
most, in implementing, maintaining, and modifying
large programs. It is precisely at this time, when the
programming task becomes very difficult, that a lan-
guage like CLU will be most valuable and appreciated.

Acknowledgments. The authors gratefully acknowl-
edge the contributions made by members of the CLU
design group over the last three years. Several people
have made helpful comments about this paper, includ-
ing Toby Bloom, Dorothy Curtis, Mike Hammer, Eliot
Moss, Jerry Saltzer, Bob Scheifler, and the referees.

References
1. Allen, F.E., and Cocke, J. A catalogue of optimizing
transformations. Rep. RC 3548. IBM Thomas J. Watson Res. Ctr.,
Yorktown Heights, N.Y., 1971.
2, Allen, F.E. A program data flow analysis procedure. Rep. RC
5278, IBM Thomas J. Watson Res. Ctr., Yorktown Heights, N.Y.,
1975.
3. Atkinson, R.R. Optimization techniques for a structured
programming language. S.M. Th., Dept. of Electr. Eng. and
Comptr. Sci., M.I.T., Cambridge, Mass., June 1976.
4. Dahl, O.J., Myhrhaug, B., and Nygaard, K. The SIMULA 67
common base language. Pub. S-22, Norwegian Comptng. Ctr., Oslo,
1970.
5. DeRemer, F., and Kron, H. Programming-in-the-large versus
programming-in-the-small. Proc. Int. Conf. on Reliable Software,
SIGPLAN Notices 10, 6 (June 1975), 114-121.
6. Dijkstra, E.W. Notes on structured programming. Structured
Programming, A .P.I.C. Studies in Data Processing No. 8, Academic
Press, New York, 1972, pp. 1-81.
7. Gunag, J.V., Horowitz, E., and Mussel D.R. Abstract data
types and software validation. Rep ISI/RR-76-48, Inform. Sci. Inst.,
U. of Southern California, Marina del Rey, Calif., Aug. 1976.
8. Hoare, C.A.R. Proof of correctness of data representations.
Acta Informatica 4 (1972), 271-281.
9, Knuth, D. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison Wesley, Reading, Mass., 1973.

576

10. Laboratory for Computer Science Progress Report 1974-1975.
Comput. Structures Group. Rep. PR-XII, Lab. for Comptr. Sci.,
M.I .T. To be published.
11, Lampson, B.W. Protection. Proc. Fifth Annual Princeton Conf.
on Inform. Sci. and Syst., Princeton U., Princeton, N.J., 1971, pp.
437-443.
12. Liskov, B .H., and Zilles, S .N. Programming with abstract data
types. Proc. ACM SIGPLAN Conf. on Very High Level Languages,
SIGPLAN Notices 9, 4 (April 1974), 50-59.
13. Liskov, B.H., and Zilles, S.N. Specification techniques for data
abstractions. IEEE Trans. Software Eng., SE-1 (1975), 7-19.
14. Liskov, B.H., and Berzins, V. An appraisal of program
specifications. Comput. Structures Group Memo 141, Lab. for
Comptr. Sci., M.I.T., Cambridge, Mass., July 1976.
15. McCarthy, J., et al. LISP 1.5 Programmer's Manual. M.I.T.
Press, Cambridge, Mass., 1962.
16. Morris, J.H. Protection in programming languages. Comm.
ACM 16, 1 (Jan. 1973), 15-21.
17. Parnas, D.L. Information distribution aspects of design
methodology. Information Processing 71, Vol. 1, North-Holland
Pub. Co., Amsterdam, 1972, pp. 339-344.
18, Scheifler, R.W. An analysis of inline substitution for the CLU
programming language. Comput. Structures Group Memo 139, Lab.
for Comptr. Sci., M.I.T., Cambridge, Mass., June 1976.
19. Spitzen, J., and Wegbreit, B. The verification and synthesis of
data structures. Acta Informatica 4 (1975), 127-144.
20. Standish, T.A. Data structures: an axiomatic approach. Rep.
2639, Bolt, Beranek and Newman, Cambridge, Mass., 1973.
21. Thomas, J.W. Module interconnection in programming systems
supporting abstraction. Rep, CS-16, Comptr. Sci. Prog., Brown U.,
Providence, R. I., 1976.
22. Wirth, N. Program development by stepwise refinement.
Comm. ACM 14, 4 (1971), 221-227.
23. Wirth, N. The programming language PASCAL. Acta
Informatica 1 (1971), 35-63.
24. Wulf, W.A., London, R., and Shaw, M. An introduction to the
construction and verification of Alphard programs. IEEE Trans.
Software Eng. SE-2 (1976), 253-264.

Communications August 1977
of Volume 20
the ACM Number 8

