Modeling and Understanding
Object-Oriented Programming

Va

{ 1M THINKING ABOUT
BUYING A MORE FUEL
L EFFICIENT CA

oMy Pﬂaxonc
Ui
n_J

ACTUALLY, DEVELOPING
COUNTRIES WOULD BUY
THE OIL YOU SAVED,

THUS ADEQUATELY
FUNDING THOSE SAME
RRORISTS.

US WILL HAVE LESS
MONEY TO FUND

BECAUSE THEN THE H

COUNTRIES THAT HATE | |5
TERRORISTS.

-

oIL !'53\ A FUNGIBLE

[AND THE STATEMENT

| WOULD BE “HEY. EVLva

| _ONE, T DON'T UND

| STAND WHAT FUNGIBLE
MEANS!”

AT LEAST T WOULDN'T
BE FUNDING THEM

[. THE
CAPITALIST SYSTEM
VIRTUALLY GUARANTEES
THAT YOULL END UP
BUYING THE LOWEST
COST OIL FROM SOURCES

OWN TO

Ml

Official Survey

« Please fill out the Toolkit course survey
» 40142 CS 655-1

« Apr-21-2006 Midnight — May-04-2006 9am
- Why not do it this evening?

GROUPS ARE IN FOR
A SURPRISE.

NEWS, DAD My \F NOU WANT TO STAY"DAD”
US? T'D) SUGGEST YOu ADOPT SME
\’GURMEFSPKWH KEY PLANKS TO YOUR
LW AMONG TIGERS PLATRORM .

g

AND SIXAEARQD 1
WHITE MALES. 4

A

QOF THOSE RYLED,
VIRTUALLY AlL FAVOR.
INCREAS

SOME SPECIAL INTERESY

Cunning Plan: Focus On Objects

« A Calculus For OO

» Operational Semantics
» Type System

» Expressive Power

» Encoding OO Features

YOU ALREADY

S S MORE
DIAMONDS

wwwi checkerboardnightmare.com

The Need for a Calculus

» There are many OO languages with many
combinations of features

» We would like to study these features
formally in the context of some primitive
language
- Small, essential, flexible

» We want a “A-calculus” or “IMP” for objects

#4

Why Not Use A-Calculus for O0?

» We could define some aspects of OO languages
using A-calculus

- e.g., the operational semantics by means of a translation
to A-calculus

» But then the notion of object be secondary
- Functions would still be first-class citizens

» Some typing considerations of OO languages are
hard to express in A-calculus

- i.e., object-orientation is not simply “syntactic sugar”

Object Calculi Summary

 As in A-calculi we have
- operational semantics
- denotational semantics
- type systems
type inference algorithms
- guidance for language design
» We will actually present a family of calculi
- typed and untyped
- first-order and higher-order type systems

» We start with an untyped calculus

An Untyped Object Calculus

* An object is a collection of methods
- Their order does not matter

« Each method has
- A bound variable for “self” (denoting the host object)
- A body that produces a result

« The only operations on objects are:
- Method invocations
- Method update

#7

Untyped Object Calculus Syntax

« Syntax:
a, bii=x - variables
| [my=q¢(x)b;] - object constructor
- ¢ is a variant of Greek letter
- x is the local name for “self”
| a.m - method invocation

- no arguments (just the self)

- method update

- this is an expression !

- the result is a copy of the object
with one method changed

- This is called the untyped c-calculus (Abadi & Cardelli)

| a.m +¢(x) b

First Examples

» An object o with two methods m, and m,
- m, returns an empty object
- m, invokes m, through self
0=[my=g(x)[], my=g(x)x.m;]

o A bit cell with three methods: value, set and reset
- value returns the value of the bit (0 initially)
- set sets the value to 1, reset sets the value to 0
- models state without A/IMP (objects are primary)
b = [value = ¢(x). 0,
set = ¢(x). x.value + ¢(y). 1,
reset = ¢(x). x.value + ¢(y). 0]

#9

Operational Semantics

* a — b means that a reduces in one step to b
» The rules are: (let o be the object [m; = g(x). b;])

0.m; — [0/x] b;
o.m, < g(y). b — [m,=g(y). b, m;=c(x). b]
(ie{l,..,n}-{k})

» We are dealing with a calculus of objects

This is a deterministic semantics (has the Church-
Rosser or “diamond” property)

Expressiveness

A calculus based only on methods with “self”
- How expressive is this language? Let’s see.
- Can we encode languages with fields? Yes.
- Can we encode classes and subclassing? Hmm.
- Can we encode X-calculus? Hmm.

» Encoding fields
- Fields are methods that do not use self
- Field access “o.f” is translated directly
« to method invocation “o.f”
- Field update “o.f < e” is translated to “o.f + ¢(x) e”

- We will drop the ¢(x) from field definitions and updates

As Expressive As A

» Encoding functions

- A function is an object with two methods
e arg - the actual value of the argument
«val - the body of the function

- A function call updates “arg” and invokes “val”
A conversion from A-calculus expressions

X = X.arg (read the actual argument)
€. € = (e.arg « g(y)).val
Ax. e = [arg=c(y)y.arg, val = ¢(x). e]

- The initial value of the argument is undefined
« From now on we use A notation in addition to ¢

A-calculus into ¢-calculus

« Consider the conversion of (1x.x) 5

Let o = [arg = ¢(z) z.arg, val = ¢(x) x.arg]

(Ax.x) 5 = (0.arg < g(y) 5).val
» Consider now the evaluation of this latter c-term
e Let o’ =[arg =¢(y) 5, val = ¢(x) x.arg]

(o.arg «+ ¢(y) 5).val —
o’.val = [arg = ¢(y) 5, val = ¢(x) x.arg].val —
x.arg[o’/x] = o’.arg —
5[0’/y] =5

Encoding Classes

» A class is just an object with a “new”
method, for generating new objects
- Arepository of code for the methods of the
generated objects (so that generated objects do
not carry the methods with them)
» Example: for generating o = [m; = ¢(x) b;]
¢ = [new = ¢(z) [m; = g(x) z.m;X],
m; = ¢(self) Ax. b;]
- The object can also carry “updateable” methods
- Note that the m; in c are fields (don’t use self)

#14

Class Encoding Example

» A class of bit cells
BitClass = [new = ¢(z). [val = ¢(x) O,
set = ¢(x) z.set x,
reset = ¢(x) z.reset x],
set = ¢(z) Ax. x.val < ¢(y) 1,
reset = ¢(z) Ax. x.val «- ¢(y) 0]
« Example:
BitClass.new — [val = ¢(x) O,
set = ¢(x) BitClass.set x,
reset = ¢(x) BitClass.reset x]
- The new object carries with it its identity

- The indirection through BitClass expresses the dynamic
dispatch through the BitClass method table

Inheritance and Subclassing

« Inheritance involves re-using method bodies
FlipBitClass =
[new = ¢(z) (BitClass.new).flip « ¢(x) z.flip x,
flip = ¢(z) Ax. x.val < not (x.val)]

» Example:
FlipBitClass.new — [val = ¢(x) O,
set = ¢(x) BitClass.set x,
reset = ¢(x) BitClass.reset x,

flip = ¢(x) FlipBitClass.flip x]
- We can model method overriding in a similar way

#16

Object Types

» The previous calculus was untyped
Can write invocations of nonexistent methods
[foo = ¢(x) ...].bogus
» We want a type system that guarantees that well-
typed expressions only invoke existing methods
First attempt:
- An object’s type specifies the methods it has available:
A::=[m;, my, .., m]
- Not good enough:
If o : [m, ...] then we still don’t know if o.m.m is safe
- We also need the type of the result of a method

First-Order Object Types.
Subtyping
» Second attempt:
A:i=[m;: Al

- Specify the available methods and their result types
« Wherever an object is usable another with more

methods should also be usable

- This can be expressed using (width) subtyping:

A<B B<C

A<A A<C

n >k
[m1 1A, mn An] < [mq1: Aq, ..., my Al

Typing Rules

Fr=bv:A m; . A €A
C=bomy; o A;

Mo Abb; o A
F{m; =g A).b]: A

FEb A my A;€A Mo AFY: A
= b.m; — s(a)b @ A

Type System Results

e Theorem (Minimum types)

- If T a: A then there exists B such that for any
A’ such thatT'-a: A’ we have B < A’

- If an expression has a type A then it has a
minimum (most precise) type B

» Theorem (Subject reduction)
-fZdra:Aanda—»vthenJFv:A

- Type preservation. Evaluating a well-typed
expression yields a value of the same type.

#19 #20]
Type Examples Unsoundness of Covariance
« Consider that old BitCell object
) » Object types are invariant (not co/contravariant)
0 = [value = ¢(x). 0, « Example of covariance being unsafe:
set = ¢(x). x.value + ¢(y). 1, - LetU=[] andL=[m:U]
- ByourrulesL<U
reset = (x). x.value «¢(y). 0] - LetP=[x:U,f:UlandQ=[x:L,f: U]
» An appropriate type for it would be - Assume we (mistakenly) say that Q < P (hoping for
BitType = [value : int, set : BitType, reset : BitType] covariance in the type of x)
7) ’ : - Consider the expression:
- Note.that this is a recurs.lve .type q:Q=[x=[m=[1, f=c¢@s:Qs.x.m]
- Consider part of the derivation that o : BitType (for set) - Then q : P (by subsumption with Q < P)
- Henceq.x«[] : P
« :BitType wvalue: int € BitType & :BitType,y :BitTypel 1 : int - This yields the object [x = [], f = ¢(s:Q) s.x.im]
x ! BitType I z.value + ¢(y)1 : BitType - Hence (gq.x < []).f: U yet (g.x « []).f fails!
#21] #22]

Covariance Would Be Nice Though

Recall the type of bit cells

BitType = [value : int, set : BitType, reset : BitType]

Consider the type of flipable bit cells

FlipBitType = [value : int, set : FlipBitType, reset :
FlipBitType, flip : FlipBitType]

We would expect that FlipBitType < BitType

Does not work because object types are invariant

» We need covariance + subtyping of recursive types

- Several ways to fix this

Variance Annotations

» Covariance fails if the method can be updated
- If we never update set, reset or flip we could allow
covariance
« We annotate each method in an object type with a
variance:
+ means read-only. Method invocation but not update
- means write-only. Method update but not invocation
0 means read-write. Allows both update and invocation
» We must change the typing rules to check
annotations

« And we can relax the subtyping rules

Subtyping with
Variance Annotations

« Invariant subtyping (Read-Write)
[..m0:B.]<[.mP:B".] ifB=B

» Covariant subtyping (Read-only)
[..m:B.]<[.m":B".] ifB<B

Contravariant subtyping (Write-only)
[.m :B.]<[.m :B.] ifB’<B

In some languages these annotations are implicit
- e.g., only fields can be updated

Classes, Types and Variance

» Recall the type of bit cells

BitType = [value? : int,

set* : BitType, reset* : BitType]

 Consider the type of flipable bit cells

FlipBitType = [value? : int, set* : FlipBitType,

reset* : FlipBitType, flip* : FlipBitType]

» Now we have FlipBitType < BitType

- Recall the subtyping rule for recursive types

FlipBitType < BitType

r<o
4 F1ipBitType.7 < u BitType.o

Classes and Types

e Let A=[m,: B;] be an object type
» Let Class(A) be the type of classes for objects of
type A
Class(A) = [new : A, m; : A — B]
- A class has a generator and the body for the methods

» Types are distinct from classes
- Aclass is a “stamp” for creating objects
- Many classes can create objects of the same type

- Some languages take the view that two objects have the
same type only if they are created from the same class
« With this restriction, types are classes
- In Java both classes and interfaces act as types

Higher-Order Object Types

» We can define bounded polymorphism
« Exmaple: we want to add a method to BitType that
can copy the bit value of self to another object
lendVal = ¢(z) Ax:t<BitType. x.val + z.val
- Can be applied to a BitType or a subtype
lendVal : Vt < BitType. t — t
- Returns something of the same type as the input
- Caninfer that “z.lendVal y : FlipBitType” if “y :
FlipBitType”
» We can add bounded existential types
- Ex: abstract type with interface “make” and “and”
Bits = 3t < BitType. {make : nat > t,and : t >t — t}
- We only know the representation type t < BitType

Conclusions

Object calculi are both simple and expressive
Simple: just method update and method invocation

» Functions vs. objects
- Functions can be translated into objects
- Objects can also be translated into functions
« But we need sophisticated type systems
« A complicated translation
 Classes vs. objects

- Class-based features can be encoded with objects:
subclassing, inheritance, overriding

Homework

o Good luck with your project presentations!
» Have a lovely summer.

IF I HAD A COMPUTER, YOUD STILL HRVE TO READ THE

TM SURE 1D GET BOOK AND TEML MAN, WHAT'S AL THE
BETIER GRADES ON 5 THE COMPUTER FUSS ABOUT COMPUTERS 2
M{ BOOK REFORTS.

