CHECKERBOARD NIGHTMARE by Kristofer Straub

CHEX DEMYSTIFIES THE NEW.
HARKETING TERHINOLOGY!

[¢ cueusc urares
SOLVABLES: ROTTOM-UP HOLISTIC

Second-Order
Type Systems

©1001 Kristofer Strau

www.nightlight press.com

Upcoming Lectures

» We’re now reaching the point where you have all of
the tools and background to understand advanced
topics.

Already Scheduled on Upcoming Days:

- Weimeric Research (Java, CCured), SLAM

Open Slots: Tue Apr 04, Thu Apr 06, (Tue Apr 18)
Possible Topics: Let’s Vote!

- Object Calculi (OOP)

- Communication and Concurrency (Pi)

- Types and Effects for Memory Management (Regions)

- Java Virtual Machine

- Automated Theorem Proving (Simplify, PVS)

- More Time on SLAM, Explain Model Checking

- Topic Of Your Choice ...

#1 #2]
The Limitations of F, Cunning Plan
« In F; a function works exactly for one type « Introduce Polymorphism (much vocab)
« Example: the identity function , .
id = AT X T T « It’s Strong: Encode Stuff
- We need to write one version for each type e It’s Too Strong: Restrict
- Worse: sort : (t — © — bool) — t array — unit . .
« The various sorting functions differ only in typing - Still too strong ... restrict more
- At runtime they perform exactly the same operations e Final Answer:
- We need different versions only to keep the type checker . « ’
happy - Polymorphism works “as expect
» Two alternatives: - All the good stuff is handled
- Circumvent the type system (see C, Java, ...), or ~ : : s
- Use a more flexible type system that lets us write only No tricky decideability problems
one sorting function (but use it on many types of objs)
#3] #a

Polymorphism

« Informal definition
A function is polymorphic if it can be applied to “many”
types of arguments
« Various kinds of polymorphism depending on the
definition of “many”
- subtype polymorphism (aka bounded polymorphism)
« “many” = all subtypes of a given type
- ad-hoc polymorphism
« “many” = depends on the function
« choose behavior at runtime (depending on types, e.g. sizeof)
- parametric predicative polymorphism
« “many” = all monomorphic types
- parametric impredicative polymorphism
« “many” = all types

Parametric Polymorphism:

Types as Parameters

» We introduce type variables and allow expressions
to have variable types
» We introduce polymorphic types
ti=b |t =t |t Vit
en=x|Axte|e e | At.e | e[r]
- At. e is type abstraction (or generalization, “for all t”)
- e[r] is type application (or instantiation)

« Examples:
- id = At.ax:t. x DVt ot
- id[int] = Ax:int. x int — int
- id[bool] = Ax:bool. x bool — bool

- “id 5” is invalid. Use “id[int] 5” instead

Impredicative Typing Rules

» The typing rules:

e .rthe:r

x.Tinl
[FEXxe:te:7—7
FEep 77 They:T
Fepes: 7
_Fe:7 4oes not occur in I
[TF Ate:VtT

M-e: Vvt
I Eelr]: [7/t)

#7

Impredicative Polymorphism

« Verify that “id[int] 5” has type int

» Note the side-condition in the rule for type
abstraction
- Prevents ill-formed terms like: Ax:t.At.x

» The evaluation rules are just like those of F,

- This means that type abstraction and application are all
performed at compile time (no run-time cost)

- We do not evaluate under A (At. e is a value)
- We do not have to operate on types at run-time

- This is called phase separation: type checking is separate
from execution

(Aside:) Parametricity or
“Theorems for Free” (P. Wadler)

« Can prove properties of a term just from its type
There is only one value of type Vt.t—t

- The identity function

There is no value of type Vt.t

Take the function reverse : Vt. t List — t List

- This function cannot inspect the elements of the list

- It can only produce a permutation of the original list

- If L, and L, have the same length and let “match” be a

function that compares two lists element-wise according

to an arbitrary predicate
- then “match L, L,” = “match (reverse L,) (reverse L,)

”

#9

Expressiveness of
Impredicative Polymorphism

« This calculus is called
- FZ
- system F
- second-order A-calculus
- polymorphic A-calculus
» Polymorphism is extremely expressive
» We can encode many base and structured
typesin F,

Encoding Base Types in F,

» Booleans
- bool =Vt.t — t — t (given any two things, select one)
- There are exactly two values of this type!

- true = At. Ax:t.Ay:t. x

- false = At. Axit.Ay:t.y

- not = Ab:bool. At.Ax:t.Ay:t. b [t] y x
o Naturals

- nat =Vt. (t - t) = t — t (given a successor and a zero
element, compute a natural number)

- 0= At. As:it— t.azit. z

- n=At. As:it— t.az:it. s (s (s...s(n)))

- add = An:nat. Am:nat. At. As:it— t.Az:t. n[t] s (m [t] s 2)

- mul = An:nat. Am:nat. At. As:t— t.Az:t. n [t] (m [t]s) z

Expressiveness of F,

» We can encode similarly:
-htT, as V(o) (o t) ot
ST xXT as Vi (=Tt =t
- unit as Vt.t—t
» We cannot encode ut.t
- We can encode primitive recursion but not full recursion

- All terms in F, have a termination proof in second-order
Peano arithmetic (Girard, 1971)
« This is the set of naturals defined using zero, successor,
induction along with quantification both over naturals and over
sets of naturals

What’s Wrong with F,

» Simple syntax but very complicated semantics
- id can be applied to itself: “id [Vt. t — t] id”

- This can lead to paradoxical situations in a pure set-
theoretic interpretation of types

- e.g., the meaning of id is a function whose domain
contains a set (the meaning of Vt.t— t) that contains id!

- This suggests that giving an interpretation to
impredicative type abstraction is tricky

» Complicated termination proof (Girard)

» Type reconstruction (typeability) is undecidable
- If the type application and abstraction are missing

» How to fix it?
- Restrict the use of polymorphism

Predicative Polymorphism

» Restriction: type variables can be instantiated only

with monomorphic types

This restriction can be expressed syntactically
ti=b |ty ot // monomorphic types
ci=t|Vt.o| oy >0, // polymorphic types
e:=x|e e, | Axic. e | At.e | e[1]

- Type application is restricted to mono types

- Cannot apply “id” to itself anymore

» Same great typing rules

» Simple semantics and termination proof

Type reconstruction still undecidable

Must. Restrict. Further!

Prenex Predicative Polymorphism

 Restriction: polymorphic type constructor at top
level only
« This restriction can also be expressed syntactically
ti=b |ty -1t
ci=1|Vt.o
e:=x|e e |t e| Ate | e1]
- Type application is predicative
- Abstraction only on mono types
- The only occurrences of V are at the top level of a type
(Vt. t - t) — (Vt. t = t) is not a valid type
« Same typing rules (less filling!)
» Simple semantics and termination proof
» Decidable type inference!

Expressiveness of
Prenex Predicative F,

» We have simplified too much!

» Not expressive enough to encode nat, bool

- But such encodings are only of theoretical
interest anyway (cf. time wasting)

« Is it expressive enough in practice? Almost!
- Cannot write something like
(As:Vt.t. ... s [nat] x ... s [bool]y)
(At. ... code for sort)
- Formal argument s cannot be polymorphic

ML and the Amazing
Polymorphic Let-Coat

» ML solution: slight extension of the predicative F,
- Introduce “let x : 6 = e; in e,”
- With the semantics of “(Ax : c.e,) e,”
- And typed as “[e,/x] e,” (result: “fresh each time”)

NFer: 0o TMaxiokex:T

Fletz:0 =ejinep: T
« This lets us write the polymorphic sort as
let
s : Vt.t = At. ... code for polymorphic sort ...
in
... s[nat] x s [bool] y
« We have found the sweet spot!

ML and the Amazing
Polymorphic Let-Coat

» ML solution: slight extension of the predicative F,
- Introduce “let x : 6 = e; in e,”
- With the semantics of “(Ax : c.e,) e,”
- And typed as “[e,/x] e,” (result: “fresh each time”)

NFer: 0o TMaxiokex:T

Fletz:0 =ejinep: T
« This lets us write the polymorphic sort as
let
s : Vt.t = At. ... code for polymorphic sort ...
in
... s[nat] x s [bool] y
 Surprise: this was a major ML design flaw!

ML Polymorphism and References

« let is evaluated using call-by-value but is typed
using call-by-name
- What if there are side effects?
« Example:
let x:Vt. (t —t)ref =At.ref (Ax: t. x)
in
x [bool] := Ax: bool. not x ;
(! x [int]) 5
- Will apply “not” to 5
- Recall previous lectures: invariant typing of references
- Similar examples can be constructed with exceptions
« It took 10 years to find and agree on a clean
solution

The Value Restriction in ML

« A typein a let is generalized only for syntactic
values
MN-eij:0 Tax:iokey:7 € is a syntactic

- value or o is
NFletx:o =epinex ! T monomorphic

« Since e, is a value, its evaluation cannot have side-
effects

« In this case call-by-name and call-by-value are the
same

« In the previous example ref (Ax:t. x) is not a value
 This is not too restrictive in practice!

#19 #20]
Subtype Bounded Polymorphism Homework
» We can bound the instances of a given type « Project Status Update Due
variable
Vt<t. o « Class Survey #2 --- Turn It In!
« Consider a functionf: Vt < 1. t = o Project Due Tue Apr 25
e How is this different thanf’ : 1 — o - You have ~29 days to complete it.
- We can also invoke f’ on any subtype of - Need help? Stop by my office or send email.
« They are different if t appears in o
-eg f:vVict.t >tandf:t =1
- Takex:t <=t
- Wehavef[t]x: 7
- Andf x:t
- We have lost information with f’
#21] #22]

