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SecondSecond--Order Order 

Type SystemsType Systems
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Upcoming Lectures
• We’re now reaching the point where you have all of 
the tools and background to understand advanced 
topics. 

• Already Scheduled on Upcoming Days:
– Weimeric Research (Java, CCured), SLAM

• Open Slots: Tue Apr 04, Thu Apr 06, (Tue Apr 18)

• Possible Topics: Let’s Vote!
– Object Calculi (OOP)

– Communication and Concurrency (Pi)

– Types and Effects for Memory Management (Regions)

– Java Virtual Machine

– Automated Theorem Proving (Simplify, PVS)

– More Time on SLAM, Explain Model Checking

– Topic Of Your Choice …
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The Limitations of F1

• In F1 a function works exactly for one type

• Example: the identity function
– id = λx:τ. x : τ→ τ

– We need to write one version for each type
– Worse:   sort : (τ→ τ→ bool) → τ array → unit

• The various sorting functions differ only in typing
– At runtime they perform exactly the same operations

– We need different versions only to keep the type checker 
happy

• Two alternatives:
– Circumvent the type system (see C, Java, ...), or

– Use a more flexible type system that lets us write only 
one sorting function (but use it on many types of objs)
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Cunning Plan

• Introduce Polymorphism (much vocab)

• It’s Strong: Encode Stuff

• It’s Too Strong: Restrict

– Still too strong … restrict more

• Final Answer:

– Polymorphism works “as expect”

– All the good stuff is handled

– No tricky decideability problems
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Polymorphism

• Informal definition
A function is polymorphic if it can be applied to “many”
types of arguments

• Various kinds of polymorphism depending on the 
definition of “many”
– subtype polymorphism (aka bounded polymorphism)

• “many” = all subtypes of a given type

– ad-hoc polymorphism
• “many” = depends on the function

• choose behavior at runtime (depending on types, e.g. sizeof)

– parametric predicative polymorphism
• “many” = all monomorphic types

– parametric impredicative polymorphism
• “many” = all types
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Parametric Polymorphism: 

Types as Parameters
• We introduce type variables and allow expressions 
to have variable types

• We introduce polymorphic types
τ ::= b | τ1 → τ2 | t | ∀t. τ

e ::= x | λx:τ.e | e1 e2 | Λt. e | e[τ]

– Λt. e is type abstraction (or generalization, “for all t”)

– e[τ] is type application (or instantiation)

• Examples:
– id = Λt.λx:t. x          :   ∀t.t → t

– id[int] = λx:int. x      :   int → int

– id[bool] = λx:bool. x :   bool → bool

– “id 5” is invalid. Use “id[int] 5” instead



2

#7

Impredicative Typing Rules

• The typing rules:

#8

Impredicative Polymorphism

• Verify that “id[int] 5” has type int

• Note the side-condition in the rule for type 

abstraction

– Prevents ill-formed terms like: λx:t.Λt.x

• The evaluation rules are just like those of F1
– This means that type abstraction and application are all 

performed at compile time (no run-time cost)

– We do not evaluate under Λ (Λt. e is a value)

– We do not have to operate on types at run-time

– This is called phase separation: type checking is separate 

from execution
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(Aside:) Parametricity or 

“Theorems for Free” (P. Wadler)
• Can prove properties of a term just from its type

• There is only one value of type ∀t.t→t

– The identity function

• There is no value of type ∀t.t

• Take the function reverse : ∀t. t List → t List

– This function cannot inspect the elements of the list

– It can only produce a permutation of the original list

– If L1 and L2 have the same length and let “match” be a 

function that compares two lists element-wise according 

to an arbitrary predicate

– then “match L1 L2” ⇒ “match (reverse L1) (reverse L2)” !
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Expressiveness of 

Impredicative Polymorphism
• This calculus is called

– F2

– system F

– second-order λ-calculus

– polymorphic λ-calculus

• Polymorphism is extremely expressive

• We can encode many base and structured 

types in F2
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Encoding Base Types in F2

• Booleans
– bool = ∀t.t → t → t  (given any two things, select one)

– There are exactly two values of this type!

– true = Λt. λx:t.λy:t. x

– false = Λt. λx:t.λy:t. y

– not = λb:bool. Λt.λx:t.λy:t. b [t] y x

• Naturals
– nat = ∀t. (t → t) → t → t (given a successor and a zero 
element, compute a natural number)

– 0 = Λt. λs:t→ t.λz:t. z

– n = Λt. λs:t→ t.λz:t. s (s (s...s(n)))

– add = λn:nat. λm:nat. Λt. λs:t→ t.λz:t. n [t] s (m [t] s z)

– mul = λn:nat. λm:nat. Λt. λs:t→ t.λz:t. n [t] (m [t] s) z
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Expressiveness of F2

• We can encode similarly: 

– τ1 + τ2 as    ∀t. (τ1 → t) → (τ2 → t) → t

– τ1 × τ2 as    ∀t. (τ1 → τ2 → t)  → t

– unit as    ∀t. t → t

• We cannot encode µt.τ

– We can encode primitive recursion but not full recursion

– All terms in F2 have a termination proof in second-order 

Peano arithmetic  (Girard, 1971)

• This is the set of naturals defined using zero, successor, 

induction along with quantification both over naturals and over 

sets of naturals 
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What’s Wrong with F2

• Simple syntax but very complicated semantics
– id can be applied to itself: “id [∀t. t → t] id”

– This can lead to paradoxical situations in a pure set-
theoretic interpretation of types

– e.g., the meaning of id is a function whose domain 
contains a set (the meaning of ∀t.t→ t) that contains id!

– This suggests that giving an interpretation to 
impredicative type abstraction is tricky

• Complicated termination proof (Girard)

• Type reconstruction (typeability) is undecidable
– If the type application and abstraction are missing

• How to fix it?
– Restrict the use of polymorphism
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Predicative Polymorphism

• Restriction: type variables can be instantiated only 
with monomorphic types

• This restriction can be expressed syntactically
τ ::= b | τ1 → τ2 | t // monomorphic types

σ ::= τ | ∀t. σ | σ1 → σ2 // polymorphic types

e ::= x | e1 e2 | λx:σ. e | Λt.e | e [τ]

– Type application is restricted to mono types

– Cannot apply “id” to itself anymore

• Same great typing rules

• Simple semantics and termination proof

• Type reconstruction still undecidable

• Must. Restrict. Further!
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Prenex Predicative Polymorphism

• Restriction: polymorphic type constructor at top 
level only

• This restriction can also be expressed syntactically
τ ::= b | τ1 → τ2 | t

σ ::= τ | ∀t. σ

e ::= x | e1 e2 | λx:τ. e | Λt.e | e [τ]

– Type application is predicative

– Abstraction only on mono types
– The only occurrences of ∀ are at the top level of a type

(∀t. t → t) → (∀t. t → t) is not a valid type

• Same typing rules (less filling!) 

• Simple semantics and termination proof

• Decidable type inference!
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Expressiveness of 

Prenex Predicative F2
• We have simplified too much!

• Not expressive enough to encode nat, bool

– But such encodings are only of theoretical 

interest anyway (cf. time wasting)

• Is it expressive enough in practice? Almost!

– Cannot write something like

(λs:∀t.τ. ... s [nat] x ...   s [bool] y) 

(Λt. ... code for sort)

– Formal argument s cannot be polymorphic
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ML and the Amazing 

Polymorphic Let-Coat
• ML solution: slight extension of the predicative F2

– Introduce “let x : σ = e1 in e2”

– With the semantics of “(λx : σ.e2) e1”
– And typed as “[e1/x] e2” (result: “fresh each time”)

• This lets us write the polymorphic sort as
let 

s : ∀t.τ = Λt. ... code for  polymorphic sort ...

in 

... s [nat] x .... s [bool] y    

• We have found the sweet spot!
#18

ML and the Amazing 

Polymorphic Let-Coat
• ML solution: slight extension of the predicative F2

– Introduce “let x : σ = e1 in e2”

– With the semantics of “(λx : σ.e2) e1”
– And typed as “[e1/x] e2” (result: “fresh each time”)

• This lets us write the polymorphic sort as
let 

s : ∀t.τ = Λt. ... code for  polymorphic sort ...

in 

... s [nat] x .... s [bool] y    

• Surprise: this was a major ML design flaw!
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ML Polymorphism and References

• let is evaluated using call-by-value but is typed 
using call-by-name
– What if there are side effects?

• Example:
let    x : ∀t. (t → t) ref = Λt.ref (λx : t. x) 

in

x [bool] := λx: bool. not x ; 
(! x [int]) 5

– Will apply “not” to 5

– Recall previous lectures: invariant typing of references

– Similar examples can be constructed with exceptions

• It took 10 years to find and agree on a clean 
solution

#20

The Value Restriction in ML

• A type in a let is generalized only for syntactic 
values

• Since e1 is a value, its evaluation cannot have side-
effects

• In this case call-by-name and call-by-value are the 
same

• In the previous example ref (λx:t. x) is not a value

• This is not too restrictive in practice!
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Subtype Bounded Polymorphism

• We can bound the instances of a given type 
variable

∀t < τ. σ

• Consider a function f : ∀t < τ. t → σ

• How is this different than f’ : τ→ σ
– We can also invoke f’ on any subtype of τ

• They are different if t appears in σ
– e.g, f : ∀t<τ.t → t and f : τ→ τ

– Take x : τ’ < τ

– We have f [τ] x : τ’

– And f’ x : τ

– We have lost information with f’
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Homework

• Project Status Update Due

• Class Survey #2 --- Turn It In!

• Project Due Tue Apr 25
– You have ~29 days to complete it. 

– Need help? Stop by my office or send email.


