LIVE BY THE OFINIONS OF
£ | | OTHERS * HA! NoT THIS

PUPPY! T GOT My OWN.
STANDARDS, DIG7 T A
FULL-ON INDIE,
BABY!

PON'T

You [M
?

Class Survey #2 Out Today

Subtyping

BAD NEWS, DAD MY IF YOU WANT TO STAY"DAD” | SOME SPECIAL INTERESY
YOUR FOLLS ARE us? T'D SUGGEST YOU ADOPT SOME | GROUPS ARE IN FOR.
WAY DOWN. YOU RATE ESPECIALLY| KEY PLANKS TO YOUR A SURPRISE.
LOW AMONG TIGERS
AND SIXANEAROD

Introduction to Subtyping

» We can view types as denoting sets of values

» Subtyping is a relation between types induced by
the subset relation between value sets

« Informal intuition:

- If tis a subtype of ¢ then any expression with type t also
has type o (e.g., Z C R, 1€Z = 1€R)

- If ©is a subtype of ¢ then any expression of type t can be
used in a context that expects a ¢

- We write t < o to say that t is a subtype of &

- Subtyping is reflexive and transitive

Plan For This Lecture

» Bonus Lecture #2 on Tue Mar 28
- Usual Suspects get food and drinks?
» Formalize Subtyping Requirements
- Subsumption

» Create Safe Subtyping Rules

- Pairs, functions, references, etc.
- Most easy thing we try will be wrong

« Subtyping Coercions

Subtyping Examples

» FORTRAN introduced int < real
- 5+ 1.5 is well-typed in many languages

« PASCAL had [1..10] < [0..15] < int

« Subtyping is a fundamental property of
object-oriented languages

- If Sis a subclass of C then an instance of S can
be used where an instance of C is expected

- “subclassing = subtyping” philosophy

Subsumption

Formalize the requirements on subtyping

Rule of subsumption
- If t < o then an expression of type t has type o

'Fe:T T<0
[Fe:o

But now type safety may be in danger:
« If we say that int < (int — int)
« Then we can prove that “55” is well typed!

There is a way to construct the subtyping relation to
preserve type safety

Defining Subtyping

» The formal definition of subtyping is by derivation

rules for the judgment T < &

We start with subtyping on the base types

- e.g. int<real or nat<int

- These rules are language dependent and are typically
based directly on types-as-sets arguments

» We then make subtyping a preorder (reflexive and
transitive)

T1<T2 T2<T7T3

T < T3

T<T

» Then we build-up subtyping for “larger” types

Subtyping for Pairs
7 <o

rx 71 <o xo

« Show (informally) that whenever a s x s’ can be used, a
t x t” can also be used:

« Consider the context H = H’[fst o] expectinga s x s’
« Then H’ expects a s
« Because t < s then H’ acceptsa t
e« Takee: t x t’. Then fst e : t so it works in H’

. Try T O

o Thus e works in H
o The case of “snd e” is similar

'~ f5.0:bool

#7 48]
Subtyping for Records Subtyping for Functions
. i i !/ /
Several subtyplng relations for records r<o <o
1. Depth subtyping = ; ;
{ll:rl.”..l,,,:rn}<{ll:T]/_ l,,,:r,’,y} T—T < o—0
o e.g., {f1 =int, f2 = int} < {f1 =real, f2 = int} Exam%leduse:t R o7
. . rounded_sqr ‘R —
2. Width subtyping actual_sqrt :R—=R
nz>m Since Z < R, rounded_sqrt < actual_sqrt
{lyim,e i m b < {1 71,0 dm ST } So if | have code like this:
« E.g., {fl =int, f2 = int} < {f2 = int} float r‘gsy'lt = r‘ounded_sq r‘t(5) H // 2
Models subclassing in 00 languages o | Canftleplice it l]k_ftth]sz tual ©(5); // 2.23
. . oat res = actual_sqr ; .
3. Or, a combination of the two .. and everything Wl:u be fine. a
Subtyping for Functions Subtyping for Functions
T <o 71 <o’ +Whatdoyou r<o 1 <o
; ; think of this ; ;
=717 <o — 0o e T—T7T < 0—0
e « This rule is unsound
- LetT' =f:int — bool (and assume int < real)
- We show using the above rule that T' + f 5.0 : bool
- But this is wrong since 5.0 is not a valid argument of f
int < real bool < bool
"= f:int — bool int — bool < real — bool
[k f:real — bool F5.0:real

Correct Function Subtyping

o<1t T <o

T <o—=0o
« We say that — is covariant in the result type and
contravariant in the argument type
« Informal correctness argument:
e Pickf:t— 1
« f expects an argument of type t
« It also accepts an argument of type o <t
« f returns a value of type 1’
« Which can also be viewed as a ¢’ (since v’ < c’)
« Hence f can be used as ¢ — &’

More on Contravariance

« Consider the subtype relationships:
int — real

real — real int — int

—

real — int

« In what sense (f € real — int) = (f € int — int) ?
« “real — int” has a larger domain!
« (recall the set theory (arg,result) pair encoding for functions)
« This suggests that “subtype-as-subset” interpretation is
not straightforward
« We’ll return to this issue (after these commercial messages ...)

Subtyping References

« Try covariance r<o

- Wrong!
7T ref < o ref

- Example: assume t < o
- The following holds (if we assume the above rule):
X:o,y:tref,f:t—intky:i=x;f(ly)
- Unsound: f is called on a o but is defined only on t
- Java has covariant arrays!
« If we want covariance of references we can recover
type safety with a runtime check for each y := x
- The actual type of x matches the actual type of y
- But this is generally considered a bad design

Subtyping References (Part 2)

« Contravariance?

T<o0o
I Also Wrong!
oref < 7ref

- Example: assume t < o
- The following holds (if we assume the above rule):
x:o,y:oref,f:t—intky:=x;f(ly)
- Unsound: f is called on a o but is defined only on t
» References are invariant

- No subtyping for references (unless we are prepared to
add run-time checks)

- hence, arrays should be invariant
- hence, mutable records should be invariant

Subtyping Recursive Types

» Recall 7 list = pt.(unit + txt)

- We would like t list < o list whenever 1 < &
. i ?

Covariance? <o

put. T < ut.o
This is wrong if t occurs contravariantly in ¢
» Take 1 = pt.t—int and o = pt.t—real
Above rule says that t < &
» We have 1~1—int and c~c—real
» <0 would mean covariant function type!
« How can we get safe subtyping for lists?

Wrong!

Subtyping Recursive Types
» The correct rule t<s
T O
ut.m < us.o
» We add as an assumption that the type variables
stand for types with the desired subtype
relationship
- Before we assumed they stood for the same type!
« Verify that now subtyping works properly for lists
» There is no subtyping between pt.t—int and

ut.t—real (recall: T<o Wrong!
ut.T < ut.o

Conversion Interpretation

» The subset interpretation of types leads to an
abstract modeling of the operational behavior

- e.g., we say int < real even though an int could not
be directly used as a real in the concrete x86
implementation (cf. IEEE 754 bit patterns)

- The int needs to be converted to a real
» We can get closer to the “machine” with a
conversion interpretation of subtyping

- We say that 1 < o when there is a conversion function
that converts values of type 1 to values of type o

- Conversions also help explain issues such as
contravariance

- Must be careful with conversions (cf. Afghanistan)

Conversions

» Examples:
- nat < int with conversion Ax.x
- int < real with conversion 2’s comp — IEEE
» The subset interpretation is a special case
when all conversions are identity functions
» Write “1 < o = C(1, o)” to say that C(1,0) is
the conversion function from subtype t to o
- If C(, o) is expressed in F, then C(t,6) : 1 — ©

Issues with Conversions
« Consider the expression “printreal 1” typed as follows:

1:int int < real
printreal : real — unit 1:real

printreal 1 : unit

we convert 1 to real: printreal (C(int,real) 1)
» But we can also have another type derivation:

printreal ! real — unit real — unit < int — unit

printreal : int — unit 1:int

printreal 1 :unit
with conversion “(C(real -> unit, int -> unit) printreal) 1”
o Which one is right? What do they mean?

Introducing Conversions

» We can compile a language with subtyping into one
without subtyping by introducing conversions
» The process follows closely that of type checking
I'Fe:t=>e
- Expression e has type t and its conversion is e
 Rules for the conversion process:
Mher:m—=7=e [hex:im=en

tepexiT=e1e2

le:T=e 7<0=C(r.0)
Fke:o= C(r.0)e

Coherence of Conversions

» Questions and Concerns:

- Can we build arbitrary subtype relations just because we
can write conversion functions?

- Is real < int just because the “floor” function is a
conversion?

- What is the conversion from “real—int” to “int—int”?
« What are the restrictions on conversion functions?
» A system of conversion functions is coherent if
whenever we have t < 7’ < ¢ then
e C(1, 1) = AX.X
* C(t,0) =C(t’, o) 0 C(r, 7’) (= composed with)
- otherwise we end up with confusing uses of subsumption

#23 |

Example of Coherence

» We want the following subtyping relations:
- int < real = Ax:int. tolEEE x
- real < int = Ax:real. floor x
« For this system to be coherent we need
- C(int, real) o C(real, int) = Ax.x, and
- C(real, int) o C(int, real) = Ax.x
» This means that
- ¥x : real . (tolEEE (floor x) = x)
- which is not true

Building Conversions

» We start from conversions on basic types

<= 0(n,m) <= C(m)
71 < 13 = C(72,73) 0 C'(11,72)
T <o1=> C(n,01) 1< or= Cm,00)
1 X 12 < 01 X 02 = Az 11 X 12.(C (71, 01) (£st(x)), C(72, 02)(snd(x)))

TLX T2 < TL= Ar T X 2. fet(x)

o1 <11 = C(o1,711) 1< 02= C(ip,02)

1< o= o> Ao Az o C(m,02) (f(Clor,m)()))

Comments

« With the conversion view we see why we do not
necessarily want to impose antisymmetry for
subtyping
- Can have multiple representations of a type
- We want to reserve type equality for representation
equality

- t<1’ and also 7’ < 1 (are interconvertible) but not
necessarily t = v’

- e.g., Modula-3 has packed and unpacked records

» We’ll encounter subtyping again for object-
oriented languages
- Serious difficulties there due to recursive types

Subtyping in POPL
and PLDI 2005

* A simple typed
intermediate language
for object-oriented
languages

o Checking type safety of
foreign function calls

» Essential language
support for generic

Ao programming
e [» Semantic type qualifiers
Gt e Permission-based
ownership

e ... (out of space on slide)

#27 |

Homework

 Project Status Update Due Today
o Class Survey #2 Out Today
» Bonus Lecture #2 On Tuesday

