Monomorphic Type Systems

HOW CAN SOMETHING SEEM
o PLAUSIBLE AT THE TIME

AND S0 IDIOTIC N
/ 4 RETROSPECT 7/

g
i 3

/.
S
2,

i
1710
[ .V
f

e

Type Soundness for F,

e Theorem: If - e:t ande l vthen - Fv:t

- Also called, subject reduction theorem, type
preservation theorem

« This is one of the most important sorts of
theorems in PL

» Whenever you make up a new safe language
you are expected to prove this
- Examples: Vault, TAL, CCured, ...

How Can We Prove It?

e Theorem: If .- e:t andelvthen - Fv:z

Proof Approaches To Type Safety

Theorem: If --e:t ande lvthen-Fv:rt
» Try to prove by induction on e
- Won’t work because [v,/x]e’; in the evaluation of e e,
- Same problem with inductionon - e : t
« Try to prove by induction on t
- Won’t work because e, has a “bigger” type than e, e,
« Try to prove by inductionon e |l v
- To address the issue of [v,/x]e’,
- This is it!

#3] #a
Type Soundness Proof Significance of Type Soundness
+ Consider the case « The theorem says that the result of an evaluation
ep Uz me] exlun [uafale] Yo has the same type as the initial expression
£ eres v » The theorem does not say that
and by inversion on the derivation of ¢y ex @ 7 - The evaluation never gets stuck (e.g., trying to apply a
| } ) non-function, to add non-integers, etc.), nor that
cFep T »T -l ep T
D T - The evaluation terminates
,  Even though both of the above facts are true of F,
« FromHone, U ..wehave -, x:1,e/ 1 '
« FromIHone, ¥ ..wehave - F v, : 1, » We need a small-step semantics to prove that the
« Need to infer that - I [v,/x]e,’ : T and use the IH execution never gets stuck
- We need a substitution lemma (by induction on e,’) « | Assert: the execution always terminates in F,
- When does the base lambda calculus ever not terminate?
5] 6]




Small-Step Contextual Semantics
for F,

» We define redexes
r:=n,+n, | ifbthene;elsee, | (Ax:t.€) Vv,
» and contexts
H::=H;+e, | nj+H,|if Hthene elsee, | H e, |

(Ax:t. ) H,
« and local reduction rules
n, +n, — n; plus n,
if true then e, else e, — e
if false then e, else e, —e,
(AX:T. €) V, — [v,y/X]e,

» and one global reduction rule
H[r] — H[e] iffr > e
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Decomposition Lemmas for F,

1. If - e : tand eis not a (final) value then there
exist (unique) H and r such that e = H[r]
- any well typed expression can be decomposed
- any well-typed non-value can make progress

2. Furthermore, there exists ©’ such that - -r: ¢’
- the redex is closed and well typed

3. Furthermore, there exists e’ such thatr — e’ and -
Fe 1

local reduction is type preserving

4. Furthermore, for any e’, - +¢e’ : ¢’ implies -+
H[e’] : =
- the expression preserves its type if we replace the redex

with an expression of same type
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Type Safety of F,

Type preservation theorem
-If-He:tande —»e’then-Fe’ :1
- Follows from the decomposition lemma

Progress theorem
- If -+ e: 1 and e is not a value then there exists e’ such
that e can make progress: e — e’
Progress theorem says that execution can make
progress on a well typed expression
From type preservation we know the execution of
well typed expressions never gets stuck

- This is a (very!) common way to state and prove type
safety of a language

What’s Next?

» We’ve got the basic simply-typed
monomorphic lambda calculus

» Now let’s make it more complicated ...

By adding features!

Product Types: Static Semantics

» Extend the syntax with (binary) tuples
e =...] (e, &) |fste|snde
T =Ly xyg
- This language is sometimes called F*
» Same typing judgment T'Fe: 1
MNFep:m MNes:m

M- (e1,e0) 71 X ™

lFe:TixXm™ [TFe:iTi X1
MFfste:m

NFsnde: ™
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Product Types: Dynamic
Semantics and Soundness

« New form of values: v :i=... | (v, Vy)

» New (big step) evaluation rules:
ervr exdum
(e1,e2) I (v1,v2)

el (v1,v2) el (v1,v2)
fste | v snd e | vp
« New contexts: H:=...| (H;, e) | (v4, H,) | fstH | snd H
« New redexes:
fst (vq, Vo) = v,
snd (vq, V;) =V,
« Type soundness holds just as before




General PL Feature Plan

» The general plan for language feature design
» You invent a new feature (tuples)

 You add it to the lambda calculus

 You invent typing rules and opsem rules

» You extend the basic proof of type safety

 You declare moral victory, and milling
throngs of cheering admirers wait to carry
you on their shoulders to be knighted by the
Queen, etc.

Records

» Records are like tuples with labels (w0O0t!)
» New form of expressions
ex=...|{Li=e, ..., L=} el
» New form of values
vi={lL=vq .o, L=V}
» New form of types
ti=.n [ {LiTy, .
+ ... follows the model of F*
- typing rules
- derivation rules
- type soundness

Sum Types

» We need disjoint union types of the form:

- either an int or a float

- either 0 or a pointer

- either a (binary tree node with two children) or a (leaf)
« New expressions and types

e:=... |injle | injre |
case e of injl x — e, | injry — e,
Ti=aL gty

- Avalue of type 1, + 1, is eitherat,orar,
- Like union in C or Pascal, but safe
« distinguishing between components is under compiler control

case is a binding operator (like “let”): x is bound in e,
and y is bound in e, (like OCaml’s “match ... with”)

Examples with Sum Types

. Cons(i)der the type unit with a single element called
*or
» The type integer option defined as “unit + int”
- Useful for optional arguments or return values
« No argument: injl * ( OCaml’s “None”)
« Argument is 5: injr 5 ( OCaml’s “Some(5)”)
- To use the argument you must test the kind of argument
- case arg of injl x = “no_arg_case” | injry = “...y...”
- injl and injr are tags and case is tag checking
» bool is the union type “unit + unit”
- true is injl *
- false is injr *
- if ethen e, else e, iscase e of injlx = e, | injry = ¢,

Static Semantics of Sum Types

» New typing rules

I_'—B:Tl I_'—B:TQ
NFinjle:7m1+7m [ Finjre:7 4+ 7

MFer:im+m Naeimbeg:rm Ty mbEer:T

[N+ caseej of injl @ = ¢ | injry = ep 1 T

« Types are not unique anymore
injl 1 ¢ int + bool
injl 1 :int + (int — int)
- this complicates type checking, but it is still doable

Dynamic Semantics of Sum Types

» New values vi=... |injlv |injrv

e New evaluation rules

el v el v

injle | injlv injre | injrv

el injlov [v/z]e I o

case ¢ of injl z = ¢; | injr y = e | v/

ellinjrv [v/yle, J o'

case ¢ of injl 2 = ¢; | injry = e v/
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Type Soundness for F*

» Type soundness still holds

» No way to use a 1, + 1, inappropriately

» The key is that the only way to use a 1, + 1,
is with case, which ensures that you are not
usingatyasart,

« In C or Pascal checking the tag is the
responsibility of the programmer!
- Unsafe (yes, even Pascal!)

Types for Imperative Features

« So far: types for pure functional languages
» Now: types for imperative features
« Such types are used to characterize non-
local effects
- assignments
- exceptions
- typestate
» Contextual semantics is useful here
- Just when you thought it was safe to forget it ...

20 |

Reference Types

« Such types are used for mutable memory cells
« Syntax (as in ML)
en=..|refe:t|e =g, |!e
ti=... | tref
- ref e - evaluates e, allocates a new memory cell, stores
the value of e in it and returns the address of the
memory cell
« like malloc + initialization in C, or new in C++ and Java

- e, :=e,, evaluates e, to a memory cell and updates its
value with the value of e,

- 1 e - evaluates e to a memory cell and returns its

Global Effects, Reference Cells

» A reference cell can escape the static scope
where it was created
(AMf:int — int ref. I(f 5)) (Ax:int. ref x : int)

e The value stored in a reference cell must be
visible from the entire program

» The “result” of an expression must now
include the changes to the heap that it
makes (cf. IMP’s opsem)

e To model reference cells we must extend
the evaluation model

contents
#21] #22]
Modeling References Static Semantics of References
+ A heap is a mapping from addresses to values « Typing rules for expressions:
h:i:=-|lha«<v:t ) _
Ne:r [TFe:7ref
- a € Addresses . . .
- We tag the heap cells with their types Fr(refe:r):7ref Feterr
- Types are useful only for static semantics. They are not . -
needed for the evaluation = are not a part of the PG st L e
implementation [M-e; :=e5 ! unit
» We call a program an expression with a heap « and for programs
p::=heaphine
- The initial program is “heap - in e” Fhvjim(i=1..n) The:r
- Heap addresses act as bound variables in the expression Fheaphine: T
- This is a trick that allows easy reuse of properties of _ . .
local variables for heap addresses where I' = ay i 7y ref,... an  Tp Tef
« e.g., we can rename the address and its occurrences at will 123 and h=ay < V1 T1,...,4n < Un . T 124




Contextual Semantics for
References

Addresses are values: v ::=... | a
o New contexts: H ::=refH | H;:=e, | a,:=H, | I H
» No new local reduction rules

» But some new global reduction rules
- heap hin H[ref v: t] — heap h, a + v : tin H[a]
« where a is fresh (this models allocation - the heap is extended)
- heap hin H[! a] — heap h in H[v]
« where a < v : t € h (heap lookup - can we get stuck?)
- heap hin H[a := v] — heap h[a < v] in H[*]
« where h[a < v] means a heap like h except that the part “a « v,
: 7 in hiis replaced by “a + v : t” (memory update)
Global rules are used to propagate the effects of a
write to the entire program (eval order matters!)

Example with References

« Consider these (the redex is underlined)
- heap - in (Af:int — int ref. I(f 5)) (Ax:int. ref x :

int)
heap - in !((Ax:int. ref x : int) 5)
- heap -in !(ref 5 : int)
heapa=5_:intinla
heapa=5:intin5
« The resulting program has a useless memory cell
« An equivalent result would be
heap -in 5
« This is a simple way to model garbage collection

#25] #26]
Exceptions Modeling Exceptions
« A mechanism that allows non-local control flow * Syntax )
- Useful for implementing the propagation of errors to e:=... | raise e | try e handle x = ¢,
caller Ti=...|exn
. . . » We ignore here how exception values are created
+ Exceptions ensure” that errors are not ignored - In examples we will use integers as exception values
- Compare with the manual error handling in C « The handler binds x in e, to the actual exception
» Languages with exceptions: value
- C++, ML, Modula-3, Java, C#, ... » The “raise” expression never returns to the
. . immediately enclosing context
« We assume that there is a special type exn of - 1 + raise 2 is well-typed
exceptions - if (raise 2) then 1 else 2 is also well-typed
- exn could be int to model error codes - (raise 2) 5 is also well-typed
- In Java or C++, exn is a special object type | * supposedly. - What should be the type of raise?
#27 ] #23 ]

Example with Exceptions

« A (strange) factorial function
let f = Ax:int.Ares:int. if x = 0 then
raise res
else
f(x-1)(res*x)
in try f51 handle x = x
» The function returns in one step from the
recursion
» The top-level handler catches the exception
and turns it into a regular result

Typing Exceptions

» New typing rules
[MFe:exn

M raisee: T
rl—ellT

[+ trye; handlex = eo @ T

« A raise expression has an arbitrary type

« This is a clear sign that the expression does not return to its
evaluation context

« The type of the body of try and of the handler must
match
 Just like for conditionals

Max:.exnkes: T




Dynamics of Exceptions

 The result of evaluation can be an uncaught
exception
- Evaluation answers: a ::=v | uncaught v
- “uncaught v” has an arbitrary type

« Raising an exception has global effects

« It is convenient to use contextual semantics
- Exceptions propagate through some contexts but
not through others
- We distinguish the handling contexts that
intercept exceptions

Contexts for Exceptions

o Contexts
-H::=e|He|VvH | raiseH | tryHhandlex = e
» Propagating contexts

- Contexts that propagate exceptions to their own
enclosing contexts

-P:i=e|Pe|VP]raiseP
» Decomposition theorem
- If e is not a value and e is well-typed then it can be
decomposed in exactly one of the following ways:
« H[(Ax:7. €) V] (normal lambda calculus)
o H[try v handle x = €] (handle it or not)
« H[try P[raise v] handle x = €] (propagate!)

P[raise v] (uncaught exception)
#31] #32 ]
Contextual Semantics for i
Exceptions EXCGpthI‘\S. Comments.
» Small-step reduction rules » The addition of exceptions preserves type
H[(Ax:t. e) v] — H[[v/x] €] soundness
H[try v handle x = €] — HIV] « Exceptions are like non-local goto
H[try P[raise v] handle x = e] — H[[v/x] €] .
P[raise v] _» uncaught v . Howe\{er, they cannot be used to implement
» The handler is ignored if the body of try recursion ) ] o
completes normally - Thus we still cannot write non-terminating
« A raised exception propagates (in one step) programs .
to the closest enclosing handler or to the top * There are a number of ways to implement
of the program exceptions (e.g., “zero-cost” exceptions)
#33] #34]

Continuations

« Some languages have a mechanism for taking a snapshot of
the execution and storing it for later use
- Later the execution can be reinstated from the snapshot
- Useful for implementing threads, for example
- Examples: Scheme, LISP, ML, C (yes, really!)
« Consider the expression: e, + e, in a context C
- How to express a snapshot of the execution right after evaluating e,
but before evaluating e, and the rest of C?
- ldea: asacontextC,=C[e+e,]
« Alternatively, as kx‘. C [x‘ +e ]
- When we finish evaluating e, to v, we fill the context and continue
with C[v, +e ]
- But the C, continuation is still available and we can continue several
times, with different replacements for e,

Continuation Uses in “Real Life”

You’re walking and come to a fork in the road
You save a continuation “right” for going right
But you go left (with the “right” continuation in hand)

You encounter Bender. Bender coerces you into joining his
computer dating service.

You save a continuation “bad-date” for going on the date.

« You decide to invoke the
“right” continuation

« So, you go right (no evil date y .
obligation, but with the “bad- BENDer's
date” continuation in hand) C%’z;’_}’glék

« A train hits you!

« On your last breath, you invoke

the “bad-date” continuation

e o o o

.

SERViCe

DISCREET
AND
DISCRRTE




Continuations
« Syntax:
e::=callcckine | throwe, e,
T:i:=..| tcont

« 1 cont - the type of a continuation that expects a t
o callcc kin e - sets k to the current context of the
execution and then evaluates expression e
- when e terminates, the whole callcc terminates
- e can invoke the saved continuation (many times even)
- When e invokes k it is as if “callcc k in e” returns
- kis boundine
- throw e, e, - evaluates e, to a continuation, e, to a
value and invokes the continuation with the value
of e, (just wait, we’ll explain it!)

Example with Continuations

« Example: another strange factorial
callcc kin
let f = Ax:int.Ares:int. if x = 0 then throw k res
else f (x - 1) (x * res)
inf51
« First we save the current context
- This is the top-level context
- A throw to k of value v means “pretend the whole callcc
evaluates to v”
« This simulates exceptions
» Continuations are strictly more powerful that
exceptions
- The destination is not tied to the call stack

Static Semantics of Continuations
Mk:7Tcontke:T

[T callcckine: T

Mex: T
/

M+ e1:7cont

[T throweyesx: 7
» Note that the result of callcc is of type t
“callcc k in e” returns in two possible situations
1. e throws to k a value of type t, or
2. e terminates normally with a value of type t

» Note that throw has any type t’

-_Since it never returns to its enclosing context .|

Dynamic Semantics of
Continuations

Use contextual semantics (wow, again!)
- Contexts are now manipulated directly
- Contexts are values of type t cont
Contexts
H::=e|He | VvH | throwH, e, | throwv, H,
Evaluation rules
- H[(Ax.e) v]
- H[callcc k in e] — H[[H/K] €]
- H[throw H, v,] = Hi[v,]
callcc duplicates the current continuation
Note that throw abandons its own context

— H[[v/x] €]

Implementing Coroutines with
Continuations

« Example:

let client = Ak. let res = callcc k’ in throw k k’ in
print (fst res);
client (snd res)

- “client k” will invoke “k” to get an integer and a continuation for
obtaining more integers

let getnext =
AL.Ak. if L = nil then raise 0
else getnext (cdr L) (callcc k’ in throw k (car L, k’))

- “getnext L k” will send to “k” the first element of L along with a
continuation that can be used to get more elements of L

getnext [0;1;2;3;4;5] (callcc k in client k)

Continuation Comments

In our semantics the continuation saves the entire
context: program counter, local variables, call
stack, and the heap!

In actual implementations the heap is not saved!

Saving the stack is done with various tricks, but it
is expensive in general.

Few languages implement continuations

- Because their presence complicates the whole compiler
considerably

- Except if you use a continuation-passing-style of
compilation (more on this next)




Continuation Passing Style

« A style of compilation where evaluation of a
function never returns directly: instead the
function is given a continuation to invoke with its
result.

« Instead of

f(int a) { return h(g(e); }
* we write
f(int a, cont k) { g(e, Ar. h(r, k) ) }

» Advantages:

- interesting compilation scheme (supports callcc easily)

- no need for a stack, can have multiple return addresses
(e.g., for an error case)

- fast and safe (non-preemptive) multithreading

Continuation Passing Style

Lete:i=x|n|e +e,|if e thene,elsee;
| Ax.e | e, e

Define cps(e, k) as the code that computes e in
CPS and passes the result to continuation k

cps(x, k) = k x

cps(n, k) =kn

cps(e; + €, k) =

cps(ey, Ang.cps(e,,An,.k (g +ny)))

cps(ix.e, k) = k (Axrk’. cps(e,k’))

cps(e; e,, k) = cps(ey, Af.cps(ey,Av,. f; v, K))
Example: cps (h(g(5)), k) = g(5, Ax.h x k)
- Notice the order of evaluation being explicit

Homework

» Read Wright and Felleisen article
- ... that you didn’t read on Tuesday.
 Soon: Class Survey #2
« Soon: Bonus Lecture #2
» Work on your projects!
- Status Update Due: Thursday Mar 23




