More Lambda Calculus and Intro to Type Systems

Plan

- Heavy Class Participation
 - Thus, wake up!
- Lambda Calculus
 - How is it related to real life?
 - Encodings
 - Fixed points
- Type Systems
 - Overview
 - Static, Dyamic
 - Safety, Judgments, Derivations, Soundness

Lambda Review

λ-calculus is a calculus of functions

$$e := x | \lambda x. e | e_1 e_2$$

• Several evaluation strategies exist based on $\beta\text{-reduction}$

$$(\lambda x.e) e' \rightarrow_{\beta} [e'/x] e$$

 How does this simple calculus relate to real programming languages?

Functional Programming

- The λ -calculus is a prototypical functional language with:
 - no side effects
 - several evaluation strategies
 - lots of functions
 - nothing but functions (pure λ -calculus does not have any other data type)
- · How can we program with functions?
- How can we program with only functions?

Programming With Functions

- <u>Functional programming</u> style is a programming style that relies on lots of functions
- A typical functional paradigm is using functions as arguments or results of other functions
 - Called "higher-order programming"
- Some "impure" functional languages permit sideeffects (e.g., Lisp, Scheme, ML, Python)
 - references (pointers), in-place update, arrays, exceptions
 - Others (and by "others" we mean "Haskell") use monads to model state updates

Variables in Functional Languages

· We can introduce new variables:

let
$$x = e_1$$
 in e_2

- x is bound by let
- x is statically scoped in (a subset of) e_2
- This is pretty much like $(\lambda x. e_2) e_1$
- In a functional language, variables are never updated
 - they are just names for expressions or values
 - e.g., x is a name for the value denoted by e_1 in e_2
- This models the meaning of "let" in math (proofs)

Referential Transparency

- In "pure" functional programs, we can reason equationally, by substitution
 - Called "referential transparency" let $x = e_1$ in $e_2 = = [e_1/x]e_2$
- In an imperative language a "side-effect" in e₁ might invalidate the above equation
- The behavior of a function in a "pure" functional language depends only on the actual arguments
 - Just like a function in math
 - This makes it easier to understand and to reason about functional programs

How Tough Is Lambda?

 How complex (a la CS theory) is it to determine if:

$$e_1 \rightarrow_{\beta}^* e$$
 and $e_2 \rightarrow_{\beta}^* e$

Expressiveness of λ -Calculus

- The λ -calculus is a minimal system but can express
 - data types (integers, booleans, lists, trees, etc.)
 - branching
 - recursion
- This is enough to encode Turing machines
 - We say the lambda calculus is <u>Turing-complete</u>
- Corollary: $e =_{B} e'$ is undecidable
- Still, how do we encode all these constructs using only functions?
- Idea: encode the "behavior" of values and not their structure

Encoding Booleans in λ -Calculus

- What can we do with a boolean?
 - we can make a binary choice (= "if" statement)
- A boolean is a function that, given two choices, selects one of them:

- true $=_{def} \lambda x. \lambda y. x$ - false $=_{def} \lambda x. \lambda y. y$ - if E_1 then E_2 else E_3 $=_{def} E_1 E_2 E_3$

• Example: "if true then u else v" is

 $(\lambda x. \ \lambda y. \ x) \ u \ v \rightarrow_{\beta} (\lambda y. \ u) \ v \rightarrow_{\beta} u$

Encoding Pairs in λ -Calculus

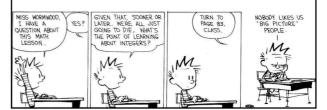
- What can we do with a pair?
 - we can access one of its elements (= ".field access")
- A pair is a function that, given a boolean, returns the first or second element

mkpair x y $=_{def}$ $\lambda b. b. x y$ fst p $=_{def}$ p true snd p $=_{def}$ p false

 $\begin{array}{l} \bullet \;\; \text{fst (mkpair x y)} \\ \longrightarrow_{\beta} \; \text{(mkpair x y) true} \\ \longrightarrow_{\beta} \; \text{true x y} \\ \longrightarrow_{\beta} \; \text{x} \end{array}$

Encoding Numbers in λ -Calculus

- What can we do with a natural number?
 - What do you, the viewers at home, think?



Encoding Numbers λ -Calculus

- What can we do with a natural number?
 - we can iterate a number of times over some function (= "for loop")
- A natural number is a function that given an operation f and a starting value s, applies f a number of times to s:
 - $0 =_{def} \lambda f. \ \lambda s. \ s$ $1 =_{def} \lambda f. \ \lambda s. \ f \ s$ $2 =_{def} \lambda f. \ \lambda s. \ f \ (f \ s)$
 - Very similar to List.fold_left and friends
- These are numerals in a unary representation
- Called Church numerals

Test Time!

- How would you encode the successor function (succ x = x+1)?
- How would you encode more general addition?
- Recall: $4 =_{def} \lambda f$. λs . f f f (f s)

Computing with Natural Numbers

• The successor function

Addition

 $\frac{\text{add } n_1 n_2}{n_1 n_2} =_{\text{def}} n_1 \text{ succ } n_2$

• Multiplication

mult $n_1 n_2 =_{def} n_1 \text{ (add } n_2) 0$

• Testing equality with 0

iszero n = $_{def}$ n (λ b. false) true

- Subtraction
 - Is not instructive, but makes a fun exercise ...

Computation Example

• What is the result of the application add 0?

 $(\lambda n_1, \lambda n_2, n_1 \text{ succ } n_2) \ 0 \rightarrow_{\beta}$ λn_2 . 0 succ $n_2 =$ λn_2 . $(\lambda f, \lambda s, s)$ succ $n_2 \rightarrow_{\beta}$ λn_2 . $n_2 =$ $\lambda x, x$

- By computing with functions we can express some optimizations
 - But we need to reduce under the lambda
 - Thus this "never" happens in practice

Toward Recursion

- Given a predicate P, encode the function "find" such that "find P n" is the smallest natural number which is larger than n and satisfies P
- Claim: with find we can encode all recursion Intuitively, why is this true?

Encoding Recursion

- Given a predicate P encode the function "find" such that "find P n" is the smallest natural number which is larger than n and satisfies P
- find satisfies the equation

find p n = if p n then n else find p (succ n)

Define

or

 $F = \lambda f. \lambda p. \lambda n. (p n) n (f p (succ n))$

We need a fixed point of F

find p n = F find p n

The Fixed-Point Combinator Y

- Let Y = λF . (λy .F(y y)) (λx .F(x x))
 - This is called the fixed-point combinator
 - Verify that Y F is a fixed point of F

 $Y F \rightarrow_{\beta} (\lambda y.F (y y)) (\lambda x. F (x x)) \rightarrow_{\beta} F (Y F)$

- Thus $Y F =_{R} F (Y F)$
- Given any function in λ-calculus we can compute its fixed-point (w00t! why do we not win here?)
- Thus we can define "find" as the fixed-point of the function F from the previous slide
- Essence of recursion is the self-application "y y"

Expressiveness of Lambda Calculus

- Encodings are fun
 - Yes! Yes they are!
- But programming in pure λ -calculus is painful
- So we will add constants (0, 1, 2, ..., true, false, if-then-else, etc.)
- Next we will add types

#20

Still Going!

- One minute break
- Stretch!

Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a type of the variable
 - A variable of type "bool" is supposed to assume only boolean values
 - If x has type "bool" then the boolean expression "not(x)" has a sensible meaning during every run of the program

Typed and Untyped Languages

- Untyped languages
 - Do not restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure λ -calculus is an extreme case of an untyped language (however, its behavior is completely specified)
- (Statically) Typed languages
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost purpose of types is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment

#24

Execution Errors

- A program is deemed <u>safe</u> if it does not cause untrapped errors
 - Languages in which all programs are safe are <u>safe languages</u>
- For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 - e.g., null pointer dereference
- Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI '05)
 - prevent insecure information flow (e.g., Li POPL '05)
- prevent resource leaks (e.g., Vault, Weimer)
- help with generic programming, probabilistic languages, \dots
- ... are often combined with dynamic analyses (e.g., CCured)

Preventing Forbidden Errors - Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, before testing
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is undecidable in most languages

....

Preventing Forbidden Errors - Dynamic Checking

- Required when static checking is undecidable
 - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g. Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g. null-pointer)

Safe Languages

- There are typed languages that are not safe ("weakly typed languages")
- All safe languages use types (statica or dynamic)

	Typed		Untyped
	Static	Dynamic	
Safe	ML, Java, Ada, C#, Haskell,	Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python,	λ-calculus
Unsafe	C, C++, Pascal,	?	Assembly

We focus on statically typed languages

Why Typed Languages?

- Development
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
- Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction
- Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Homework

- Read Cardelli article
 - Spread it over the break ...
- · Read great works of literature
- Homework 5 Due Today
 - Don't ruin your Spring Break by having it hanging over you ...
- No Class Next Week (Spring Break!)
 - Next Lecture: Tue Mar 14

#30