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More Lambda CalculusMore Lambda Calculus

andand

Intro to Type SystemsIntro to Type Systems

#2

Plan

• Heavy Class Participation
– Thus, wake up!

• Lambda Calculus
– How is it related to real life?

– Encodings

– Fixed points

• Type Systems
– Overview

– Static, Dyamic

– Safety, Judgments, Derivations, Soundness

#3

Lambda Review

• λ-calculus is a calculus of functions

e := x  | λx. e  | e1 e2

• Several evaluation strategies exist based on 

β-reduction

(λx.e) e’ →β [e’/x] e

• How does this simple calculus relate to real 

programming languages?
#4

Functional Programming

• The λ-calculus is a prototypical functional 
language with:

– no side effects

– several evaluation strategies

– lots of functions

– nothing but functions (pure λ-calculus does not 

have any other data type)

• How can we program with functions?

• How can we program with only functions?

#5

Programming With Functions

• Functional programming style is a programming 

style that relies on lots of functions

• A typical functional paradigm is using functions as 

arguments or results of other functions

– Called “higher-order programming”

• Some “impure” functional languages permit side-

effects (e.g., Lisp, Scheme, ML, Python)

– references (pointers), in-place update, arrays, 

exceptions

– Others (and by “others” we mean “Haskell”) use monads 

to model state updates

#6

Variables in Functional Languages

• We can introduce new variables:

let x = e1 in e2

– x is bound by let

– x is statically scoped in (a subset of) e2

• This is pretty much like (λx. e2) e1

• In a functional language, variables are never 

updated

– they are just names for expressions or values

– e.g., x is a name for the value denoted by e1 in e2

• This models the meaning of “let” in math (proofs)
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Referential Transparency

• In “pure” functional programs, we can reason 

equationally, by substitution

– Called “referential transparency”

let x = e1 in e2 === [e1/x]e2

• In an imperative language a “side-effect” in e1
might invalidate the above equation

• The behavior of a function in a “pure” functional 

language depends only on the actual arguments

– Just like a function in math

– This makes it easier to understand and to reason about 

functional programs

#8

How Tough Is Lambda?

• How complex (a la CS theory) is it to 

determine if:

e1 →β
* e   and e2 →β

* e

#9

Expressiveness of λ-Calculus

• The λ-calculus is a minimal system but can express
– data types (integers, booleans, lists, trees, etc.)

– branching

– recursion

• This is enough to encode Turing machines
– We say the lambda calculus is Turing-complete

• Corollary: e =β e’ is undecidable

• Still, how do we encode all these constructs using 
only functions?

• Idea: encode the “behavior” of values and not their 
structure

#10

Encoding Booleans in λ-Calculus

• What can we do with a boolean? 

– we can make a binary choice (= “if” statement)

• A boolean is a function that, given two 

choices, selects one of them:

– true =def λx. λy. x

– false =def λx. λy. y

– if E1 then E2 else E3 =def E1 E2 E3

• Example: “if true then u else v” is 

(λx. λy. x) u v →β (λy. u) v→β u

#11

Encoding Pairs in λ-Calculus

• What can we do with a pair?

– we can access one of its elements (= “.field access”)

• A pair is a function that, given a boolean, returns 

the first or second element

mkpair x y =def λb. b x y

fst p =def p true

snd p =def p false

• fst (mkpair x y) 

→β (mkpair x y) true 

→β true x y 

→β x

#12

Encoding Numbers in λ−Calculus

• What can we do with a natural number? 

– What do you, the viewers at home, think?
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#13

Encoding Numbers λ-Calculus

• What can we do with a natural number?

– we can iterate a number of times over some function (= 

“for loop”) 

• A natural number is a function that given an 

operation f and a starting value s, applies f a 

number of times to s:

0 =def λf. λs. s

1 =def λf. λs. f s

2 =def λf. λs. f (f s)

– Very similar to List.fold_left and friends

• These are numerals in a unary representation

• Called Church numerals
#14

Test Time!

• How would you encode the successor 
function (succ x = x+1)?

• How would you encode more general 
addition? 

• Recall: 4 =def λf. λs. f f f (f s)

#15

Computing with Natural Numbers

• The successor function

succ n =def λf. λs. f (n f s)

or succ n =def λf. λs. n f (f s)

• Addition

add n1 n2 =def n1 succ n2

• Multiplication

mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0

iszero n =def n (λb. false) true

• Subtraction
– Is not instructive, but makes a fun exercise …

#16

Computation Example

• What is the result of the application add 0?

(λn1. λn2. n1 succ n2) 0 →β

λn2. 0 succ n2 =

λn2. (λf. λs. s) succ n2 →β

λn2. n2 =

λx. x

• By computing with functions we can express 

some optimizations

– But we need to reduce under the lambda

– Thus this “never” happens in practice

#17

Toward Recursion
• Given a predicate P, encode the function “find”

such that “find P n” is the smallest natural number 

which is larger than n and satisfies P

• Claim: with find we can encode all recursion

Intuitively, why is this true? 

#18

Encoding Recursion

• Given a predicate P encode the function “find”
such that “find P n” is the smallest natural number 
which is larger than n and satisfies P

• find satisfies the equation
find p n = if p n then n else find p (succ n)

• Define
F = λf.λp.λn.(p n) n (f p (succ n))

• We need a fixed point of F
find = F find

or
find p n = F find p n
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#19

The Fixed-Point Combinator Y

• Let Y = λF. (λy.F(y y)) (λx. F(x x))

– This is called the fixed-point combinator

– Verify that Y F is a fixed point of F

Y F →β (λy.F (y y)) (λx. F (x x)) →β F (Y F)

– Thus Y F =β F (Y F)

• Given any function in λ-calculus we can compute 

its fixed-point (w00t! why do we not win here?)

• Thus we can define “find” as the fixed-point of the 

function F from the previous slide

• Essence of recursion is the self-application “y y”

#20

Expressiveness of Lambda 

Calculus
• Encodings are fun

– Yes! Yes they are!

• But programming in pure λ-calculus is painful

• So we will add constants (0, 1, 2, …, true, 

false, if-then-else, etc.)

• Next we will add types

#21

Still Going!

• One minute 

break

• Stretch!

#22

Types

• A program variable can assume a range of 

values during the execution of a program

• An upper bound of such a range is called a 

type of the variable

– A variable of type “bool” is supposed to assume 

only boolean values

– If x has type “bool” then the boolean expression 

“not(x)” has a sensible meaning during every run 

of the program

#23

Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable

– Operations might be applied to inappropriate arguments. 
The behavior in such cases might be unspecified

– The pure λ-calculus is an extreme case of an untyped
language (however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types

– A type system keeps track of types

– Types might or might not appear in the program itself

– Languages can be explicitly typed or implicitly typed

#24

The Purpose Of Types

• The foremost purpose of types is to prevent certain 
types of run-time execution errors

• Traditional trapped execution errors
– Cause the computation to stop immediately

– And are thus well-specified behavior

– Usually enforced by hardware

– e.g., Division by zero, floating point op with a NaN

– e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the 
machine = this is very bad!)

– e.g., accessing past the end of an array

– e.g., jumping to an address in the data segment
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#25

Execution Errors

• A program is deemed safe if it does not cause untrapped 
errors
– Languages in which all programs are safe are safe languages

• For a given language we can designate a set of forbidden 
errors
– A superset of the untrapped errors, usually including some trapped 

errors as well

• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions (e.g., Flanagan TLDI ‘05)

– prevent insecure information flow (e.g., Li POPL ’05)

– prevent resource leaks (e.g., Vault, Weimer)

– help with generic programming, probabilistic languages, …

– … are often combined with dynamic analyses (e.g., CCured)

#26

Preventing Forbidden Errors -

Static Checking

• Forbidden errors can be caught by a 

combination of static and run-time checking

• Static checking

– Detects errors early, before testing

– Types provide the necessary static information 

for static checking

– e.g., ML, Modula-3, Java

– Detecting certain errors statically is undecidable

in most languages

#27

Preventing Forbidden Errors -

Dynamic Checking

• Required when static checking is 

undecidable

– e.g., array-bounds checking

• Run-time encodings of types are still used 

(e.g. Lisp)

• Should be limited since it delays the 

manifestation of errors

• Can be done in hardware (e.g. null-pointer)

#28

Safe Languages

• There are typed languages that are not safe 

(“weakly typed languages”)

• All safe languages use types (statica or dynamic)

• We focus on statically typed languages

Assembly?C, C++, 

Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby, 

Perl, Smalltalk, 

PHP, Python, …

ML, Java, 

Ada, C#, 

Haskell, ...

Safe

DynamicStatic

UntypedTyped

#29

Why Typed Languages?

• Development
– Type checking catches early many mistakes

– Reduced debugging time

– Typed signatures are a powerful basis for design

– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications

– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking

– Safe languages are easier to analyze statically
• the compiler can generate better code
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Homework

• Read Cardelli article
– Spread it over the break …

• Read great works of literature

• Homework 5 Due Today
– Don’t ruin your Spring Break by having it hanging 
over you …

• No Class Next Week (Spring Break!)
– Next Lecture: Tue Mar 14


