More Lambda Calculus
and
Intro to Type Systems

Yo RnoW, T
DOMT THINK
MATH 5 A
SUENCE, [
THINK. 1TS
A RELIGION.

THIS WEOLE Book 15 L
OF THINGS THAT WAVE TO
BE ACCEPTED O FATH
s A
RELIGION !

‘ TEAK. AL THESE EQUATIONS

ARE LIKE MRACLES, Yo

THEE THO HWOMBERS AMD wip
030 MDD THEM, THEY MAG1CaL]
§ BECOME OME MEW NUMEER. ¢
§ NC ONE CHY SMY HoW T

i OR oy DONT.

Plan

» Heavy Class Participation
- Thus, wake up!
o Lambda Calculus
- How is it related to real life?
- Encodings
- Fixed points
» Type Systems
- Overview
- Static, Dyamic
- Safety, Judgments, Derivations, Soundness

Lambda Review

e A-calculus is a calculus of functions
e:=X | AX.e | e, &

« Several evaluation strategies exist based on
3-reduction

(Axe) e’ =g [e’/x] e

» How does this simple calculus relate to real
programming languages?

Functional Programming

» The A-calculus is a prototypical functional
language with:
- no side effects
- several evaluation strategies
- lots of functions

- nothing but functions (pure A-calculus does not
have any other data type)

» How can we program with functions?

» How can we program with only functions?

#3]
Programming With Functions Variables in Functional Languages
» Functional programming style is a programming » We can introduce new variables:
style that relies on lots of functions letx=e ine,
« A typical functional paradigm is using functions as - xis bound by let
arguments or results of other functions - x is statically scoped in (a subset of) e,
- Called “higher-order programming” « This is pretty much like (Ax. e,) e,
« Some “impure” functional languages permit side- « In a functional language, variables are never
effects (e.g., Lisp, Scheme, ML, Python) updated
- references (pointers), in-place update, arrays, - they are just names for expressions or values
exceptions - e.g., x is a name for the value denoted by e, in e,
- Others (and by “others” we mean “Haskell”) use monads « This models the meaning of “let” in math (proofs)
to model state updates
5] 6]

Referential Transparency

« In “pure” functional programs, we can reason
equationally, by substitution
- Called “referential transparency”

letx=e;ine, === [e,/x]e,

« In an imperative language a “side-effect” in e,
might invalidate the above equation

» The behavior of a function in a “pure” functional
language depends only on the actual arguments
- Just like a function in math

- This makes it easier to understand and to reason about
functional programs

#7

How Tough Is Lambda?

» How complex (a la CS theory) is it to
determine if:

e~y e and e, =, e

THE MORE YOU KNOW, THE
HARDER. IT IS TO TAKE
DECISWE ACTION

ONCE YOU BECOME
INFORMED , YOU START
SEEING COMPLEXITIES
AND SHADES

NOJ REALIZE THAT NOTHING | BEING A MAN OF ACTION,

1S AS CLEAR AND SIMPLE | I CANT AFFORD TO TAKE

AS \T FIRST APPEARS. | THAT RisK.

ULTIMATELY, KNOWLEDGE -
1S PARALNZING .

\
pl

YOURE IGNORANT,
BUT AT LEAST
YOU ACT ON (T,

=

Expressiveness of A-Calculus

» The A-calculus is a minimal system but can express
- data types (integers, booleans, lists, trees, etc.)
- branching
- recursion

« This is enough to encode Turing machines
- We say the lambda calculus is Turing-complete

+ Corollary: e =; €’ is undecidable

« Still, how do we encode all these constructs using
only functions?

« Idea: encode the “behavior” of values and not their
structure

#9

Encoding Booleans in A-Calculus

» What can we do with a boolean?

- we can make a binary choice (= “if” statement)
» A boolean is a function that, given two

choices, selects one of them:

- true Sgef AX.AY. X

- false =gef AX.AY.Y

- if E; then E, else E; =4f EqE; E5
» Example: “if true then u else v” is

(Ax. Ry. x)uv =4 (Ay. U) v =5 u

Encoding Pairs in A-Calculus

» What can we do with a pair?
- we can access one of its elements (= “.field access”)

« A pair is a function that, given a boolean, returns
the first or second element

mkpair x y =4t Ab.bxy
fstp =4f P true
snd p =4 P false

o fst (mkpair x y)
—p (mkpair x y) true
—p true xy
—p X

Encoding Numbers in A—Calculus

« What can we do with a natural number?
- What do you, the viewers at home, think?

GINEN THAT, SOONER OR TURN TO NOBODY LIKES US
LATER, WERE AL JUST PAGE @3, "BIG PICTURE
GOING TO DIE, WHAT'S CLASS, PEOPLE .

THE PQINT OF LEARNING

We L
£

%

Encoding Numbers A-Calculus

» What can we do with a natural number?

- we can iterate a number of times over some function (=

“for loop”)

A natural number is a function that given an
operation f and a starting value s, applies f a
number of times to s:

0 =g Af. As. s

1 =g Mf. As. f's

2 =46 M. As. f (f5)

- Very similar to List.fold_left and friends

These are numerals in a unary representation

Called Church numerals

Test Time!

» How would you encode the successor
function (succ x = x+1)?

» How would you encode more general
addition?

e Recall: 4 =4 A\f. As. fff(fs)

THATS ey TVE STOPPED DONG FET TO GOOD SELF- | | REMIND ME | T THINKG THS
HOMENGRK. T DONT NEED TD O LOWER MOuR: 3
LEARN THINGS To LIKE MISELF. TO THE POINT

M FINE THE WAY T AM ALREADY WET 2

SEE, HOBBES, WE SWOULDNT

NEED ACCOMPLISUMENTS To

FEEL GOOD SELVES,
M

RGHT. WE
SHOUD TRE
PRIDE 1N QUR

MEDIOCRITY

Computing with Natural Numbers

« The successor function
succ n
or succ n
o Addition

=qef M. As. f(nfs)
=4er M. As. nf (fs)

add n;n, =44 Ny suUCC N,
» Multiplication
mult ny n, =4 Ny (@dd ny) 0
» Testing equality with 0
iszeron =4 n (Ab. false) true

» Subtraction
- Is not instructive, but makes a fun exercise ...

Computation Example

» What is the result of the application add 0?
(Ang. Any. nysucc ny) 00—
An,. 0 succ n, =
An,. (Af. As. s) succ n, —
AN, N, =
AX. X
» By computing with functions we can express
some optimizations
- But we need to reduce under the lambda
- Thus this “never” happens in practice "

Toward Recursion

« Given a predicate P, encode the function “find”
such that “find P n” is the smallest natural number
which is larger than n and satisfies P

o Claim: with find we can encode all recursion
Intuitively, why is this true?

DAD, ARE YOO VICARIQUSLY LIVING | | IF T WERE, You =

RoUGH ME N THE HOPE TUAT MT | | CAN BET 1D 8t Mo, i
ACCOMPLISHMENTS WILL VAL\DATE || RE-EVALUATING DAD KEEPS | &
YOUR MEDIOCRE ey A | M{ STRATEGY INSULTING /

LIFE AND IN SOME |
WAY COMPENSATE |
FOR AL OF TUE |
OPRRTUNITIES /‘
YU BOTCHED >

ME.
\\—' il

Encoding Recursion

» Given a predicate P encode the function “find”
such that “find P n” is the smallest natural number
which is larger than n and satisfies P

» find satisfies the equation

find p n = if p n then n else find p (succ n)

» Define

F = Af.Ap.An.(p n) n (f p (succ n))
* We need a fixed point of F
find = F find
or
findpn=Ffindpn

The Fixed-Point Combinator Y

e Let Y =AF. (Ay.F(yy)) (Ax. F(x x))
- This is called the fixed-point combinator
- Verify that Y F is a fixed point of F
YF =4 (Ly.F (yy)) Ax. F (xx)) =4 F (YF)
- Thus Y F =, F (Y F)
» Given any function in A-calculus we can compute
its fixed-point (w00t! why do we not win here?)
» Thus we can define “find” as the fixed-point of the
function F from the previous slide

Essence of recursion is the self-application “y y”

Expressiveness of Lambda
Calculus

» Encodings are
- Yes! Yes they are!
» But programming in pure A-calculus is painful

» So we will add constants (0, 1, 2, ..., true,
false, if-then-else, etc.)

» Next we will add types

O EARTHLING AS EVER BEFORE |
SEEN T CRNTERED SCARS
SURFACE OF DISTANY PLIOG) 206!

Still Going!

AIVOUGH TS NOT ONLIKE.
SONE OF THOSE 21T CREAM
COMECALS .

WE_OIN THE FEARLESS SPICEMAN SAEF.
INTERPLANETARY, EXPLORER EXTRAORDINARE | | QUR WERD SETS
QT AT THE PRTMEST REACHES.

_ OF THE GALAXY. =

| « One minute
break

e Stretch!

)

1E FIRES WS\
HYPERGETS A

@ i\

W » v TR S AU AEUNG| (757
j ‘
, h '

Types

» A program variable can assume a range of
values during the execution of a program

 An upper bound of such a range is called a
type of the variable
- A variable of type “bool” is supposed to assume
only boolean values

- If x has type “bool” then the boolean expression
“not(x)” has a sensible meaning during every run
of the program

1422

Typed and Untyped Languages

» Untyped languages
- Do not restrict the range of values for a given variable
- Operations might be applied to inappropriate arguments.
The behavior in such cases might be unspecified
- The pure XA-calculus is an extreme case of an untyped
language (however, its behavior is completely specified)

« (Statically) Typed languages
- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

The Purpose Of Types

» The foremost purpose of types is to prevent certain
types of run-time execution errors
» Traditional trapped execution errors
- Cause the computation to stop immediately
- And are thus well-specified behavior
- Usually enforced by hardware
- e.g., Division by zero, floating point op with a NaN
- e.g., Dereferencing the address 0 (on most systems)
» Untrapped execution errors
- Behavior is unspecified (depends on the state of the
machine = this is very bad!)
- e.g., accessing past the end of an array
- e.g., jumping to an address in the data segment

Execution Errors

« A program is deemed safe if it does not cause untrapped
errors
- Languages in which all programs are safe are safe languages
« For a given language we can designate a set of forbidden
errors

- Asuperset of the untrapped errors, usually including some trapped
errors as well

« e.g., null pointer dereference
» Modern Type System Powers:
- prevent race conditions (e.g., Flanagan TLDI ‘05)
- prevent insecure information flow (e.g., Li POPL ’05)
- prevent resource leaks (e.g., Vault, Weimer)
- help with generic programming, probabilistic languages, ...
- ... are often combined with dynamic analyses (e.g., CCured)

Preventing Forbidden Errors -
Static Checking

 Forbidden errors can be caught by a
combination of static and run-time checking
« Static checking
- Detects errors early, before testing
- Types provide the necessary static information
for static checking
- e.g., ML, Modula-3, Java
- Detecting certain errors statically is undecidable
in most languages

#26]
Preventing Forbidden Errors -
. . Safe Languages
Dynamic Checking
. . L « There are typed languages that are not safe
» Required when static checking is (“weakly typed languages”)
undecidable « All safe languages use types (statica or dynamic)
- e.g., array-bounds checking Typed Untyped
» Run-time encodings of types are still used Static Dynamic
(e.g. Lisp) Safe ML, Java, |Lisp, Scheme, Ruby, | A-calculus
. C ; ; Ada, C#, Perl, Smalltalk,
Shoqld be l]mlted since it delays the Haskoll .. | PHP. Python, .
manifestation of errors
 Can be done in hardware (e.g. null-pointer)
» We focus on statically typed languages
#23]

Why Typed Languages?

» Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation
» Maintenance
- Types act as checked specifications
- Types can enforce abstraction
o Execution
- Static checking reduces the need for dynamic checking

Safe languages are easier to analyze statically
« the compiler can generate better code

Homework

» Read Cardelli article
- Spread it over the break ...
» Read great works of literature
» Homework 5 Due Today
- Don’t ruin your Spring Break by having it hanging
over you ...
» No Class Next Week (Spring Break!)
- Next Lecture: Tue Mar 14

