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Lambda CalculusLambda Calculus

#2

Plan

• Introduce lambda calculus

– Syntax

– Substitution

– Operational Semantics (… with contexts!)

– Evaluation strategies

– Equality

• Relationship to programming languages 

(next time)

• Study of types and type systems (later)

#3

Lambda Background
• Developed in 1930’s by Alonzo Church

• Subsequently studied by many people (still studied 
today!)

• Considered the “testbed” for procedural and 
functional languages
– Simple

– Powerful 

– Easy to extend with features of interest

– Plays similar role for PL research as Turing machines do 
for computability and complexity

– Somewhat like a crowbar …

“Whatever the next 700 languages turn out to be, 
they will surely be variants of lambda calculus.”

(Landin ’66)
#4

Lambda Celebrity Representative

• Milton Friedman?

• Morgan Freeman?

• C. S. Friedman? 

#5

Gordon Freeman

• Best-selling PC FPS to date

#6

Lambda Syntax

• The λ-calculus has three kinds of expressions 
(terms)

e ::= x Variables

|  λx.e Functions (abstraction)

|  e1 e2 Application

• λx.e is a one-argument function with body e

• e1 e2 is a function application

• Application associates to the left
x y z means   (x y) z

• Abstraction extends to the right as far as possible
λx.xλy.x y z means λx.(x (λy. ((x y) z)))
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#7

Why Should I Care?
• A language with 3 expressions? Woof!

• Li and Zdancewick. Downgrading policies and 
relaxed noninterference. POPL ’05
– Just one example of a recent PL/security paper …

#8

Examples of Lambda Expressions

• The identity function:

 I =def λx. x

• A function that given an 
argument y discards it and 
yields the identity function:

 λy. (λx. x)

• A function that given a function 
f invokes it on the identity 
function

λf. f (λx. x)

“There goes 

our grant 

money.”

#9

Scope of Variables

• As in all languages with variables it is 
important to discuss the notion of scope
– The scope of an identifier is the portion of a 

program where the identifier is accessible

• An abstraction λx. E binds variable x in E
– x is the newly introduced variable

– E is the scope of x (unless x is shadowed …)

– We say x is bound in λx. E

– Just like formal function arguments are bound in 
the function body

#10

Free and Bound Variables

• A variable is said to be free in E if it has 
occurrences that are not bound in E

• We can define the free variables of an 
expression E recursively as follows:

Free(x) = { x } 

Free(E1 E2) = Free(E1) ∪ Free(E2)

Free(λx. E) = Free(E) - { x }

• Example: Free(λx. x (λy. x y z)) = { z }

• Free variables are (implicitly or explicitly) 
declared outside the term 

#11

Free Your Mind!

• Just like in any language with statically nested 

scoping we have to worry about variable shadowing

– An occurrence of a variable might refer to different 

things in different contexts

• e.g., IMP with locals: let x = E in x + (let x = E’ in x) + x

• In λ-calculus: λx. x (λx. x) x

#12

Renaming Bound Variables

• λ-terms that can be obtained from one another 
by renaming of the bound variables are 
considered identical. 

• This is called α-equivalence. 

• Renaming bound vars is called α-renaming. 

• Example: λx. x is identical to λy. y and to λz. z

• Intuition: 
– By changing the name of a formal argument and of all 

its occurrences in the function body, the behavior of 
the function does not change

– In λ-calculus such functions are considered identical
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#13

Make It Easy On Yourself

• Convention: we will always try to rename 

bound variables so that they are all unique

– e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x

• This makes it easy to see the scope of 

bindings and also prevents confusion!

#14

Substitution

• The substitution of E’ for x in E (written [E’/x]E )

– Step 1. Rename bound variables in E and E’ so they are 

unique

– Step 2. Perform the textual substitution of E’ for x in E

• Called capture-avoiding substitution.

• Example: [y (λx. x) / x] λy. (λx. x) y x

– After renaming: [y (λv. v)/x] λz. (λu. u) z x

– After substitution: λz. (λu. u) z (y (λv. v))

• If we are not careful with scopes we might get:

λy. (λx. x) y (y (λx. x))

#15

The deBruijn Notation

• An alternative syntax that avoids naming of bound 
variables (and the subsequent confusions)

• The deBruijn index of a variable occurrence is the 
number of lambdas that separate the occurrence 
from its binding lambda in the abstract syntax tree

• The deBruijn notation replaces names of 
occurrences with their deBuijn index

• Examples:
– λx.x λ.0

– λx.λx.x λ.λ.0

– λx.λy.y λ.λ.0

– (λ x. x x) (λ z. z z)  (λ.0 0) (λ.0 0)

– λx. (λx. λy.x) x      λ.(λ.λ.1) 0

Identical terms

have identical 

representations !

#16

Combinators

• A λ-term without free variables is closed or a 
combinator

• Some interesting combinators:
I = λx. x

K = λx.λy.x

S = λf.λg.λx.f x (g x)

D = λx. x x

Y = λf.(λx. f (x x)) (λx. f (x x))

• Theorem: Any closed term is equivalent to one 
written with just S, K, I
– Example: D =β S I I

– (we’ll discuss this form of equivalence in a bit)  

#17

Informal Semantics

• We consider only closed terms

• The evaluation of 

(λx. e) e’

1. Binds x to e’

2. Evaluates e with the new binding

3. Yields the result of this evaluation

• Like a function call, or like “let x = e’ in e”

• Example: 

(λf. f (f e)) g evaluates to g (g e)
#18

Operational Semantics

• Many operational semantics for the λ-calculus

• All are based on the equation

(λx. e) e’ =β [e’/x]e

usually read from left to right

• This is called the β-rule and the evaluation step a 
β-reduction

• The subterm (λx. e) e’ is a β-redex

• We write e →β e’ to say that e β-reduces to e’ in 
one step 

• We write e →β
* e’ to say that e β-reduces to e’ in 0 

or more steps
– Should remind you of small-step opsem term-rewriting
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#19

Examples of Evaluation

• The identity function: 
(λx. x) E → [E / x] x = E

• Another example with the identity:
(λf. f (λx. x)) (λx. x) →

[λx. x / f] f (λx. x)) = [(λx. x) / f] f (λy. y)) = 

(λx. x) (λy. y) →

[λy. y /x] x = λy. y

• A non-terminating evaluation:
(λx. xx)(λy. yy) →

[λy. yy / x]xx = (λy. yy)(λy. yy) → …

• Try T T, where T = λx.x x x

#20

Evaluation and the Static Scope

• The definition of substitution guarantees that 
evaluation respects static scoping:

(λ x. (λy. y x)) (y (λx. x)) →β λz. z (y (λv. v))

(y remains free, i.e., defined externally)

• If we forget to rename the bound y:
(λ x. (λy. y x)) (y (λx. x)) →∗

β λy. y (y (λv. v))

(y was free before but is bound now)

#21

Another View of Reduction

• The application

• becomes:

APP

λx.

x   x   x

e e’

e’ e’ e’

e Terms can “grow”

substantially through

β-reduction !

#22

Normal Forms

• A term without redexes is in normal form

• A reduction sequence stops at a normal form

• If e is in normal form and e →*
β e’ then e is 

identical to e’

• K = λx.λy. x is in normal form

• K I is not in normal form

#23

Nondeterministic Evaluation

• We define a small-step reduction relation

• This is a non-deterministic semantics

• Note that we evaluate under λ (where?)

(λx. e) e’ → [e’/x]e

e1 e2 → e1’ e2

e1 → e1’

e1 e2 → e1 e2’

e2 → e2’

λx. e  → λx. e’

e → e’

#24

Lambda Calculus Contexts

• Define contexts with one hole

H ::= • | λx. H | H e | e H

• Write H[e] to denote the filling of the hole in 

H with the expression e

• Example:

H = λx. x • H[λy.y] = λx. x (λy. y)

• Filling the hole allows variable capture!

H = λx. x • H[x] = λx.x x



5

#25

Contextual Opsem

• Contexts allow concise formulations of congruence
rules (application of local reduction rules on 
subterms)

• Reduction occurs at a β-redex that can be 
anywhere inside the expression

• The latter rule is called a congruence or structural 
rule

• The above rules do not specify which redex must be 
reduced first

(λx. e) e’ → [e’/x]e H[e] → H[e’]

e → e’

#26

The Order of Evaluation

• In a λ-term there could be more than one 

instance of (λx. E) E’, as in:

(λy. (λx. x) y) E

– could reduce the inner or the outer λ

– which one should we pick?

(λy. (λx. x) y) E

(λy. [y/x] x) E = (λy. y) E [E/y] (λx. x) y =(λx. x) E

E

inner outer

#27

The Diamond Property

• A relation R has the diamond property if whenever 

e R e1 and e R e2 then there exists e’ such that e1 R 

e’ and e2 R e’

• →β does not have the diamond property

• →β
* has the diamond property

• Also called the confluence property

e

e1 e2

e’

R R

RR

#28

The Diamond Property

• Languages defined by non-deterministic sets 
of rules are common
– Logic programming languages

– Expert systems

– Constraint satisfaction systems
• and thus most pointer analyses …

– Dataflow systems

– Makefiles

• It is useful to know whether such systems 
have the diamond property 

#29

(Beta) Equality

• Let =β be the reflexive, transitive and 
symmetric closure of →β

=β is  (→β ∪ ←β)
*

• That is, e1 =β e2 if e1 converts to e2 via a 
sequence of forward and backward →β

e1
e2

•

•

•

#30

The Church-Rosser Theorem

• If e1 =β e2 then there exists e’ such that e1 →β
* e’

and e2 →β
* e’

• Proof (informal): apply the diamond property as 
many times as necessary

e1
e2

•

•

•

• •

e’
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#31

Corollaries

• If e1 =β e2 and e1 and e2 are normal forms 

then e1 is identical to e2

– From C-R we have ∃e’. e1 →
*
β e’ and e2 →

*
β e’

– Since e1 and e2 are normal forms they are 

identical to e’

• If e →*
β e1 and e →*

β e2 and e1 and e2 are 

normal forms then e1 is identical to e2

– “All terms have a unique normal form.”

#32

Evaluation Strategies

• Church-Rosser theorem says that independent of 
the reduction strategy we will find � 1 normal form

• But some reduction strategies might find 0 

– (λx. z) ((λy.y y) (λy.y y)) → (λx. z) ((λy.y y) (λy.y y)) →

…

– (λx. z) ((λy.y y) (λy.y y)) → z

• There are three traditional strategies

– normal order (never used, always works)

– call-by-name (rarely used, cf. TeX)

– call-by-value (amazingly popular)

#33

Call To Power (By Value)

• Normal Order
– Evaluate the left-most redex not contained in another 

redex

– If there is a normal form, this finds it

– Not used in practice: requires partially evaluating 
function pointers and looking “inside” functions

• Call-By-Name (“lazy”)
– Don’t reduce under λ, don’t evaluate a function 

argument (until you need to)

– Does not always evaluate to a normal form

• Call-By-Value (“strict” or “eager”)
– Don’t reduce under λ, do evaluate a function’s argument 

right away

– Finds normal forms less often than the other two
#34

Endgame

• This time: λ syntax, 
semantics, reductions, 

equality, …

• Next time: encodings, real 

programs, type systems, 

and all the fun stuff!

“Wisely done, Mr. 

Freeman. I will see 

you up ahead.”

#35

Homework

• Project Proposal Due Two Days Ago …

• Read Leroy article, think about axiomatic

• No Class Tuesday (projects, HW5)

• Homework 5 Due Next Thursday


