Lambda Calculus

I READ THIS \ wun P You m\w(IT_REALY MADE ME SEE THINGS
LIBRARY BORK DIFFERENTLY. ITS GWEN ME
A LOT TO THINK ABOUT.

|

IM SLAD You }
ENJOYED IT,

ITS COMPLICATING
MY LIFE. DONT
GET ME AN{ MORE

Plan

« Introduce lambda calculus
- Syntax
- Substitution
- Operational Semantics (... with contexts!)
- Evaluation strategies
- Equality

 Relationship to programming languages
(next time)

« Study of types and type systems (later)

Lambda Background

» Developed in 1930’s by Alonzo Church
» Subsequently studied by many people (still studied
today!)
» Considered the “testbed” for procedural and
functional languages
- Simple
- Powerful
- Easy to extend with features of interest

- Plays similar role for PL research as Turing machines do
for computability and complexity

- Somewhat like a crowbar ..
“Whatever the next 700 languages turn out to be
they will surely be variants of lambda calculus.”
(Landin ’66)

i3]

Lambda Celebrity Representative

e Milton Friedman?
» Morgan Freeman?
e C. S. Friedman?

Lambda Syntax

» The A-calculus has three kinds of expressions
(terms)

e =X Variables
| Ax.e Functions (abstraction)
| e e, Application
e AX.eis a one-argument function with body e
e, e, is a function application

Application associates to the left
Xyz means (XYy)z

Abstraction extends to the right as far as possible
AX.XAY.X'Y Z means AX.(X (Ly. ((xYy) z)))

Why Should | Care?

» A language with 3 expressions? Woof!

« Li and Zdancewick. Downgrading policies and
relaxed noninterference. POPL ’05
- Just one example of a recent PL/security paper ...

4. LOCAL DOWNGRADING POLICIES Thm:r

TEm=mT Q-RerL
4.1 Label Definition m=m:T

Definition 4.1.1 (The policy language). In Figure 1 Prmi=mg:7 Qv
T'Eme=my 7

Temy=my:7 Thmy=ms:r

- TRAN:
i TFmi=ms:7 Q s
+. .=

Tooimibmy =ma:7

Ner.m [mom @ c|mam
Az:int. m

Q-Aps

ThAz:im.my = Ar:T.mg 171 — T2

{m ney (k21)

Thmi=me:iTi— T2

CEmg=mir
2 L Q-Arr

TFomymg =1ng ma: 72

Q-BiOp

Examples of Lambda Expressions

 The identity function:
| =ger AX. X
« A function that given an
argument y discards it and
yields the identity function:
AY. (AX. X)
« A function that given a function
f invokes it on the identity
function

“There goes
our grant
money.”

Af. f (AX. x)

Scope of Variables

« As in all languages with variables it is
important to discuss the notion of scope

- The scope of an identifier is the portion of a
program where the identifier is accessible

e An abstraction Ax. E binds variable x in E
- x is the newly introduced variable
- E is the scope of x (unless x is shadowed ...)
- We say x is bound in Ax. E

- Just like formal function arguments are bound in
the function body

#9

Free and Bound Variables

« A variable is said to be free in E if it has
occurrences that are not bound in E
« We can define the free variables of an
expression E recursively as follows:
Free(x) = {x}
Free(E, E,) = Free(E,) U Free(E,)
Free()x. E) = Free(E) - { x }
o Example: Free(Ax. x (A\y. xy z))={z}
» Free variables are (implicitly or explicitly)
declared outside the term

Free Your Mind!

« Just like in any language with statically nested
scoping we have to worry about variable shadowing

- An occurrence of a variable might refer to different
things in different contexts

e e.g., IMP with locals: let x =E in x + (let x = E” in x) + x

e In A-calculus: ax. x (Ax. x) x
t] ot

Renaming Bound Variables

« A-terms that can be obtained from one another
by renaming of the bound variables are
considered identical.

» This is called a-equivalence.

» Renaming bound vars is called «-renaming.

« Example: Ax. x is identical to Ay. y and to Az. z

« Intuition:

- By changing the name of a formal argument and of all
its occurrences in the function body, the behavior of
the function does not change

- In A-calculus such functions are considered identical

Make It Easy On Yourself

» Convention: we will always try to rename
bound variables so that they are all unique
- e.g., write Ax. x (Ly.y) x instead of Ax. x (Ax.X) X
» This makes it easy to see the scope of
bindings and also prevents confusion!

WHAT DOES IT MEAN
WHEN SOMECNE SAYS

TO "GNE T THE K
OL' COLLEGE TRY' ? N

IT MEANS YOU JOIN YOUR ERIENDS,
GET SOME CWEAP BEER, ORDER A

THAT'S Not WHERE DD

WHAT IT MEANS!] YOV GO T
PrZZh, AND FORSET COLLEGE?
ABOUT TOMORRON e

Substitution

The substitution of E’ for x in E (written [E’/X]E)

- Step 1. Rename bound variables in E and E’ so they are
unique

- Step 2. Perform the textual substitution of E’ for x in E

Called capture-avoiding substitution.

Example: [y (Ax. x) / x] Ly. (AX. X) y X

- After renaming: [y (Lv. v)/x] Az. (Au. u) z X

- After substitution: 1z. (Au. u) z (y (Av. v))

If we are not careful with scopes we might get:

Y. (. x)y (y (AX. X))

The deBruijn Notation

An alternative syntax that avoids naming of bound
variables (and the subsequent confusions)

» The deBruijn index of a variable occurrence is the
number of lambdas that separate the occurrence
from its binding lambda in the abstract syntax tree

The deBruijn notation replaces names of
occurrences with their deBuijn index

« Examples: .
XX 2.0 Identical terms
 AXAXX 2.0 have identical
- AXAYLY 1.0 representations !
- (Ax.xx)(Az.zz) (A.00)(1.00)
- AX. (AX. Ay.X) X A (AA1)0

Combinators

A L-term without free variables is closed or a
combinator

Some interesting combinators:

| = AX. X

K = AX.AY.X

S = Af. g Ax.f x (g X)
D = AX. X X

Y =Af.(Ax. f (x X)) (Ax. f (x X))
Theorem: Any closed term is equivalent to one
written with just S, K, |
- Example: D=, S 11
- (we’ll discuss this form of equivalence in a bit)

Informal Semantics

» We consider only closed terms
e The evaluation of
(Ax. e) e’

1.Binds x to e’

2. Evaluates e with the new binding

3. Yields the result of this evaluation
o Like a function call, or like “let x =€’ in e”
o Example:

(Af. f(fe))g evaluatestog (ge)

Operational Semantics

Many operational semantics for the A-calculus
All are based on the equation
(Ax. e) e’ = [e’/x]e
usually read from left to right
This is called the B-rule and the evaluation step a

3-reduction
The subterm (Ax. e) e’ is a B-redex

We write e —; €’ to say that e B-reduces to e’ in
one step

We write e —;" e’ to say that e B-reduces to e’ in 0
or more steps

- Should remind you of small-step opsem term-rewriting

Examples of Evaluation

» The identity function:
(Ax.X) E—>[E/Xx]x=E
» Another example with the identity:
(Af. f (Ax. X)) (AX. X) —
[Ax. x / f] f (Ax. X)) = [(Ax. x) / f] f (Ay. y)) =
(AX. X) (Ay. y) —
[Ay.y /X] x=Lry. y
« A non-terminating evaluation:
(AX. XX)(Ay. yy) —
[ry. yy /7 x]xx = (Ay. yY)Ay. yy) = ...
e Try TT, where T = AX.X X X

Evaluation and the Static Scope

» The definition of substitution guarantees that
evaluation respects static scoping:
(A x. (Ry. y X)) (y (AX. X)) =5 AzZ. Z (y (V. V))

1 [t t t

(y remains free, i.e., defined externally)
« If we forget to rename the bound y:
(A x. (Ay. y X)) (y (Ax. X)) =5 Ay, Y (Y (Av. V)
t (]]

(y was free before but is bound now)

Another View of Reduction

» The application app
AX.

e becomes:

Terms can “grow”
substantially through
B-reduction !

Normal Forms

» A term without redexes is in normal form
« A reduction sequence stops at a normal form

« If e is in normal form and e —; €’ then e is
identical to e’

e K = Ax.Ay. x is in normal form

e K |is not in normal form

Nondeterministic Evaluation

» We define a small-step reduction relation

(Ax. e) e’ — [e’/x]e

’
e, —e
e e —e e

’
e, — e,
e e —e’e
e—e’
AX. € — AX. €’

« This is a non-deterministic semantics
» Note that we evaluate under . (where?)

Lambda Calculus Contexts

 Define contexts with one hole
H::=e|2Xx.H|He | eH
» Write H[e] to denote the filling of the hole in
H with the expression e
» Example:
H=2Xx.Xeo H[Ay.y] = Ax. X (Ay. y)
« Filling the hole allows variable capture!
H=2Xx.Xeo H[x] = Ax.x x

Contextual Opsem

Contexts allow concise formulations of congruence
rules (application of local reduction rules on
subterms)

Reduction occurs at a B-redex that can be
anywhere inside the expression

The latter rule is called a congruence or structural
rule

« The above rules do not specify which redex must be
reduced first

(Ax. e) e’ — [e’/x]e

The Order of Evaluation

e In a A-term there could be more than one
instance of (Ax. E) E’, as in:
(Ay. (Ax. x)y) E
- could reduce the inner or the outer A
- which one should we pick?

(ry. . xX)y) E

inner outer

(Ay. [y/x1x)E=(ry.y) E [E/y] (ix. x)y =(Ax. x) E

The Diamond Property

A relation R has the diamond property if whenever
e R e; and e R e, then there exists e’ such that e; R
e’ ande,Re’ e

» — does not have the diamond property
+ — has the diamond property
« Also called the confluence property

The Diamond Property

» Languages defined by non-deterministic sets
of rules are common
- Logic programming languages
- Expert systems
- Constraint satisfaction systems
« and thus most pointer analyses ...
- Dataflow systems
- Makefiles

« It is useful to know whether such systems
have the diamond property

#27] #23]
(Beta) Equality The Church-Rosser Theorem
« Let =, be the reflexive, transitive and * If e, =; e, then there exists e’ such that e, —" e’
. ande, - e
symmetric closure of — . .
= is (_>[5 U <_B)* A/\
» That is, e, =, e, if e, converts to e, via a € °)
) p =2 1 2
sequence of forward and backward — . ° N . —
° ° \/
/\/\ €
e, ° e, « Proof (informal): apply the diamond property as
many times as necessary
#29] #30]

Corollaries

« If e, =; e, and e, and e, are normal forms
then e, is identical to e,
- From C-R we have Je’. e; —'; €’ and e, =5 €’
- Since e, and e, are normal forms they are
identical to e’

«lfe>";e,ande -5 e, and e, and e, are
normal forms then e, is identical to e,
- “All terms have a unique normal form.”

Evaluation Strategies

» Church-Rosser theorem says that independent of
the reduction strategy we will find < 1 normal form
« But some reduction strategies might find 0
- (0 2) (.y y) .y y)) — (X, 2) ((hy-y Y) (Ay.y ¥)) —

- (0x.2) (W.yy) (Ly.y y)) — 2
» There are three traditional strategies
- normal order (never used, always works)
- call-by-name (rarely used, cf. TeX)
- call-by-value (amazingly popular)

Call To Power (By Value)

e Normal Order

- Evaluate the left-most redex not contained in another
redex

- If there is a normal form, this finds it
- Not used in practice: requires partially evaluating
function pointers and looking “inside” functions
 Call-By-Name (“lazy”)
- Don’t reduce under %, don’t evaluate a function
argument (until you need to)
- Does not always evaluate to a normal form
o Call-By-Value (“strict” or “eager”)
- Don’t reduce under ., do evaluate a function’s argument
right away
- Finds normal forms less often than the other two

Endgame

« This time: A syntax,
semantics, reductions,
equality, ...

» Next time: encodings, real
programs, type systems,
and all the fun stuff!

“Wisely done, Mr.
Freeman. | will see
you up ahead.”

Homework

» Project Proposal Due Two Days Ago ...

» Read Leroy article, think about axiomatic
» No Class Tuesday (projects, HW5)

o Homework 5 Due Next Thursday

WOW, THE LAST TWO I HOPE THE TEACHMER
LOOK, IT'S ALMOST L HOURS REALLY FLEW BY! DIONT SA ANYTHING
I o'CLock! g IMPORTANT.
=

