Abstract Interpretation

(Galois, Collections, Widening)

HEY DAD, KNOW B GWING WORDS NEW To THAT END, ILL BE DONT You THINK [MaRYY
WHAT T FIGURED! MEANINGS, ORDINARY INVENTING NEW DEFINITIONS | | THATS TOTALY | FAS,
QUT? THE ENGLISH CAN BECOME AN | FOR COMMON WORDS, SO SPAM? 115 FAR OUT.
MEANING OF | EXCLUSIONARY CODE’ THO | WELL BE UNABLE TO LUBRICATED # k\‘_ =
WORDS ISNT o3) | GENERATIONS CAN BE COMMUNICATE. WELL, I'M .

A FIXED THING ! P§ DIVIDED BY THE SAME

ANY WORD CAN s Q) 4 LANGUAGE !

MEAN AN{THING £)2

R

! JZ

-

LW R o
o

Tool Time

» How’s Homework 5 going?
 Get started early
» Compilation problems?
- See FAQ
(trivia: what tool brand is this?)

More Power!

« You can handle it!

Review

» We introduced abstract interpretation

 An abstraction mapping from concrete to
abstract values

- Has a concretization mapping which forms a
Galois connection

» We’ll look a bit more at Galois connections
» We’'ll lift Al from expressions to programs
« ... and we’ll discuss the mythic “widening”

Why Galois Connections?

» We have an abstract domain A

- An abstraction function : Z — A

- Induces o : P(Z) - Aandy: A — P(Z)
» We argued that for correctness

v(a; 0p ;) D y(a4) op ¥(a,)

- We wish for the set on the left to be as small as possible
- To reduce the loss of information through abstraction
For each set S C C, define a(S) as follows:
- Pick smallest S’ that includes S and is in the image of y
- Define a/(S) = vy'(S’)
- Then we define: a, op a, = a(y(a;) op y(a,))
» Then a and y form a Galois connection

Galois Connections

« A Galois connection between complete
lattices A and P(C) is a pair of functions a
and y such that:

- yand o are monotonic (with the C ordering on

P(C))
- a(y(@)=a forallaeA T
- v (a8)) D5 for all S € P(C)

1 .G

yoa 1 2 3 4
&-_y

More on Galois Connections
IS FREEDOM OF SPEECH AN ABSOLUTE RIGHT? FMNIR eIt 1)

¥ Canything which hurts connections
other people’s convict- .
ions, particularly relig- are monoton]c
ious convictions, .
must be avoided. . |n a Galo]s
Freedom of .
expression connection

should be exe.:-h TN
cised in a spirit
of responsibility. g\
I must condem

one function
uniquely and

provocatiohy /4 E—— — abSOIUtely
may not agree wl .
;l;an‘g‘;:::ldsly what you say but I will determ]nes
fuel passion| ﬁn&l&l&:ﬁg the Other
= = HT

Abstract Interpretation for
Imperative Programs

« So far we abstracted the value of
expressions

« Now we want to abstract the state
at each point in the program

« First we define the concrete
semantics that we are abstracting
- We’ll use a collecting semantics

Collecting Semantics

e Recall
- Astate o € X. Any state o has type Var — Z
- States vary from program point to program point
» We introduce a set of program points: labels
» We want to answer questions like:
- Is x always positive at label i?
- Is x always greater or equal to y at label j?
» To answer these questions we’ll construct
C € Contexts. C has type Labels — P(X)
- For each label i, C(i) = all possible states at label i
- This is called the collecting semantics of the program

- This is basically what SLAM and BLAST approximate
(using BDDs to store P(X) efficiently)

#9

Defining the Collecting Semantics

» We first define relations between the collecting
semantics at different labels
- We do it for unstructured CFGs (cf. HW5!)
- Can do it for IMP with careful notion of program points
» Define a label on each edge in the CFG

» For assighment

i
C={olx:=n] | c € C; A [e]o = n}
i

Defining the Collecting Semantics

e For conditionals

"
false b true

else then
Cise ={ 0 | 0 €C, A[b]o = false}
Cihen={0 | o € C, A[b]o = true}

» Assumes b has no side effects (as in IMP or HW5)

Defining the Collecting Semantics

 For a join

« Verify that these relations are monotonic
- If we increase a C, all other C, can only increase

#12

Collecting Semantics: Example

o Assume x > 0 initially

Ci={o | o(x) > 0}

Collecting Semantics: Example

» Assume x > 0 initially

C,={o | o(x) > 0}
= {oly:=11 6 € C,)

Collecting Semantics: Example
» Assume x > 0 initially
C;={o | o(x) > 0}

C,={oly:=1]1| o e C}
C;=C,n{c | o(x)= 0}

Collecting Semantics: Example

» Assume x > 0 initially

Ci={o | o(x) > 0}

C,={o[y:=1] | c € C;}

C;=C,n{c | o(x) =0}

C, = {oly:=a(y)*a(x)] |
ce€Cy}

Collecting Semantics: Example

o Assume x > 0 initially

C={c | o(x) > 0}

C={oly:=11 | c € C}}

U {o[x:=6(x)-1] | c€C,}

C;=C,n{c | o(x) = 0}

C, = {oly:=o(y)*a(x)] |
ceC}

Collecting Semantics: Example

o Assume x > 0 initially

Ci={c | o(x) >0}
C,={oly:=11|ocecC}
U {o[x:=6(x)-1] | c€C,}
C;=C,n{c | o(x) = 0}
C4 = {oly:=o(y)*a(x)] |
c ey}
C;=C,N{oc | o(x) = 0}

Why Does This Work?

» We just made a system of recursive
equations that are defined largely in terms
of themselves
- eg., (G, =F(C), G, = G(G,), C; = H(Cy)

» Why do we have any reason to believe that
this will get us what we want?

- v

HEY, YoU || youve never ¥ wow oo \| [o 1 reawy ~How can

wniva Peay N WHATS)| | wearp oF TE " You e o Taarer AR waALeo
THE QUESTION QUESTION PLAY? EXPLAIN 17 DONT KNOW | | g on# MEANT

GAME? GAM/ N R(iti?! 5""71'«
= 5 «@ &
3 / . -)
) 3 i

The Collecting Semantics

» We have an equation with the unknown C
- The equation is defined by a monotonic and
continuous function on the domain Labels —
P(Z)
» We can use the least fixed-point theorem
- Start with CO(L)=0 (aka C° = AL.D)
- Apply the relations between C; and C; to get C',
from C9

- Stop when all Ck = Ck1
- Problem: we’ll go on forever for most programs
- But we know the fixed point exists

Collecting Semantics: Example

o (assume x > 0 initially)

¢ ={c | o(x) >0}

C= {oly:=1]lcecy}
U{o[x:=o(x)-1] | c € C,}

C3=C,n{o | o(x)= 0}

C5=C,N{c | o(x) =0}

C, = {oly:=o(y)*o(x) | c € C5}

21

Collecting Semantics: Example

o (assume x > 0 initially)

2 Grlolo=0)
C= {oly:=1]lcecy}
U{o[x:=o(x)-1] | c € C;}
0 C3=C,n{o | o(x) = 0}
C5=C,N{c | o(x) =0}
C, = {oly:=o(y)*o(x) | c € C5}

1422

Collecting Semantics: Example

o (assume x > 0 initially)
1 {x>0}

Ci= (o | o(x) > 0)

Co= {oly=1]loec)
U{o[x:=o(x)-1] | 6 € C;}

C;=C,n{o | o(x) = 0}

C5=C,N{o | o(x) =0}

C, = {oly:=o(y)*o(x) | c € C5}

#23 |

Collecting Semantics: Example

o (assume x > 0 initially)
1 {x>0}

{x>0,y=1}

oy Ci1={o | a(x) >0}
0yl ¢, = (oly] o € ¢}
U{o[x:=o(x)-1] | c € C,}
0 C;=C,n{o | o(x) = 0}
C5=C,N{c | o(x) =0}
C, = {oly:=o(y)*o(x) | c € C5}

24|

Collecting Semantics: Example

o (assume x > 0 initially)
{x>0}

{x>0,y=1

S Ci={c|o(x)>0}

b0yl ¢, = (oly=1] | o € C)
U{o[x:=o(x)-1] | c € C,}

C3=C,n{o | o(x) = 0}

C5=C,N{c | o(x) =0}

C, = {oly:=o(y)*o(x) | c € C5}

25|

Collecting Semantics: Example

o (assume x > 0 initially)
{x>0}

{x>0,y=1

S Ci={c|o(x)> 0}

b0yl ¢, = (oly=1] | o € C)
U{o[x:=o(x)-1] | c € C,}

C;=C,n{o | o(x) = 0}

C5=C,N{o | o(x) =0}

C, = {oly:=o(y)*o(x) | c € C3}

126 |

Collecting Semantics: Example

o (assume x > 0 initially)
1 {x>0}

(x2 0, y=xe1)

{x>0,y=1vy=x+1}

5 GEle920)
001 ¢, = (oly=1] | o € C)

yiEyTx U{o[x:=o(x)-1] | c € C,}
4 {x>0,y=x} C3=C,n{o | o(x) =0}
el Cs=C,N{o | o(x) = 0}

C, = {oly:=o(y)*o(x) | c € C5}

#27 |

Abstract Interpretation

» Pick a complete lattice A (abstractions for P(X))
- Along with a monotonic abstraction o : P(X) — A
- Alternatively, pick B : £ — A
- This uniquely defines its Galois connection y

» Take the relations between C, and move them to
the abstract domain:

a: Label — A
» Assignment
Concrete: C; = {o[x :=n] | o € C; A [e]o = n}
Abstract: a;=a{o[x:=n] | c €y(a) A [e]o = n}

128 |

Abstract Interpretation

» Conditional
Concrete: C;={ o | o € C; A [b]o = false} and
C,={o |l oeCA[b]o = true}
Abstract: a;=a{o | o € y(a) A [b]o = false} and
a=af{o| oey(@) A [b]o = true}
» Join
Concrete: C=C UG
Abstract: a = o (v(a;) Uv(a;) = lub {a;, a;}

Least Fixed Points
In The Abstract Domain

» We have a recursive equation with unknown “a”
- Defined by a monotonic and continuous function on the
domain Labels — A
» We can use the least fixed-point theorem:
- Start witha®=AL.L (aka: a%(L) = 1)
- Apply the monotonic function to compute ak*! from ak
- Stop when ak*! = ak
» Exactly the same computation as for the collecting
semantics
- What is new?

- “There is nothing new under the sun but there are lots
of old things we don't know.” - Ambrose Bierce

Least Fixed Points
In The Abstract Domain

* We have a hope of termination!

« Classic setup: A has only uninteresting chains
(finite number of elements in each chain)
- A has finite height h (= “finite-height lattice”)

» The computation takes O(h x |Labels|?) steps

Abstract Interpretation: Example
» Consider the follolwing program, x>0

- At each step “a” makes progress on at least one label 3 5
- We can only make progress h times
- And each time we must compute |Labels| elements yiEy*x we want tC? do the
« This is a quadratic analysis: good news 4 sign analysis on it.
- This is exactly the same as Kildall’s 1973 analysis of - 1
dataflow’s polynomial termination given a finite-height X=X
lattice and monotonic transfer functions.
#32]
. . . ’ |
Abstract Domain for Sign Analysis Let’s Do It!
Label Iterations —
« Invent the complete sign lattice T x|+ *
T T
S={1,-,0,+ T Y
-0+ } 2 |x|Ll|+ T T
« Construct the complete lattice vIL] + T T
A={x,y} =S 3 |x|L T T
- With the usual point-wise ordering y L T T
- Abstract state gives the sign for x and y 4 |x|L T T
. 1 T T
» We start with a® = AL.Ave{x,y}. L s i N 0
.« a0 —
- aka: a’(L,v) = L yIL . T T
34

Notes, Weaknesses, Solutions

o We abstracted the state of each variable
independently
A={x,y}—>{l,-,0,+ T3}
» We lost relationships between variables
- E.g., at a point x and y may always have the
same sign
- In the previous abstraction we get {x := T, y :=
T} at label 2 (when in fact y is always positive!)
« We can also abstract the state as a whole
A=P{L,-,0,+ TIx{L, -0+ T}

Other Abstract Domains

« Range analysis
- Lattice of ranges: R ={ L, [n..m], (-c0, m], [n, +00), T}
- It is a complete lattice
o [n..m] U [n’..m’] = [min(n, n’)..max(m,m’)]
e [n..m] 1 [n’..m’] = [max(n, n’)..min(m, m’)]
« With appropriate care in dealing with co
- B :Z — Rsuch that B(n) = [n..n]
- o :P(Z) — Rsuch that o(S) = lub {(n) | n€ S} =
[min(S)..max(S)]
- y:R—=>P(Z)suchthaty(r)={n|ner}
» This lattice has infinite-height chains
- So the abstract interpretation might not terminate!

Example of Non-Termination

« Consider this (common) program fragment

We want to do range
analysis on it.

Example of Non-Termination

Consider the sequence of abstract states at point 2

- [1.11,01..21, [1..3], -

- The analysis never terminates

- Or terminates very late if the loop bound is known
statically

It is time to approximate even more: widening

We redefine the join (lub) operator of the lattice to

ensure that from [1..1] upon union with [2..2] the

result is [1..+00) and not [1..2]

« Now the sequence of states is

- [1..1], [1, +o0), [1, +o0) Done (no more infinite chains)

#38]

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

» A widening 7 : (P x P) — P on a poset (P,C)
satisfies:

-VX,yeEP. xXE(xVY) A YEEXVY)

- For all increasing chains x° C x' C ... the increasing chain
yo0 =def x0, .., ynt =def yn 7 xn*1, .. is not strictly
increasing.

» Two different main uses:
- Approximate missing lubs. (Not for us.)
- Convergence acceleration. (This is the real use.)

« A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F € L - L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.

Formal Widening Example
[1,11v[1,2] = [1,+00)

» Range Analysis on z: |Original x! Widened yi
Lo: z:=1; X0,= L yo,= L

L1: whilez<99do [xty=[1,1] |yt = [1,1]
L2: z :=z+1 X2, = [1,1] y2, = [1,1]
L3: done /*z>99*%/[x3,=[2,2] |y5,=[2,2]
L4: X2, =[1,2] yt2, = [1,+00)
xt; =def the jth iterative attempt XL31 = [2’+OO)

;oatt:()lran;)elitfian abstract value for XL40 = [99’+OO) yL40 = [99’+OO)

_ stable (fewer than 99 iterations!)

#40

Other Abstract Domains

« Linear relationships between variables
- A convex polyhedron is a subset of Z* whose elements
satisfy a number of inequalities:
Xy F ApXy F e F X > G
- This is a complete lattice; linear programming methods
compute lubs
« Linear relationships with at most two variables
- Convex polyhedra but with < 2 variables per constraint
- Octagons (x +y > c) have efficient algorithms

» Modulus constraints (e.g. even and odd)

Abstract Chatter

Al, Dataflow and Software Model Checking

- The big three (aside from flow-insensitive type systems)
for program analyses

Are in fact quite related:

- David Schmidt. Data flow analysis is model checking of
abstract interpretation. POPL *98.

Al is usually flow-sensitive (per-label answer)

Al can be path-sensitive (if your abstract domain

includes Vv, for example), which is just where

model checking uses BDD’s

Metal, SLAM, ESP, ... can all be viewed as Al

Abstract Interpretation
Conclusions

Al is a very powerful technique that underlies a
large number of program analyses

Al can also be applied to functional and logic
programming languages

There are a few success stories

- Strictness analysis for lazy functional languages

- PolySpace for linear constraints

In most other cases however Al is still slow
When the lattices have infinite height and widening
heuristics are used the result becomes
unpredictable

Homework

 Project Proposal Due Today
» Read Pierce Article, pages 1-10 only
o Homework 5 Due Thursday

