COVERED BODIES ! COULD

MS Patch Tuesday

“eEye Digital Security has reported a vulnerability
in Windows Media Player ... due to a boundary error
within the processing of bitmap files (.bmp) and
can be exploited to cause a heap-based buffer
overflow via a specially crafted bitmap file that
declares its size as 0 ... exploitation allows
execution of arbitrary code”

Six of seven “critical” or “important” bugs were
found by people outside of Microsoft

NEXT, ON EYEWIMMESS ACTION| | WELL GET THE STORY FROM | | THATS EXEWITHESS ACTION
NEWS | BLOOD-SPATTERED | | THE LIVING ROOMS OF SOBBING,| | NEWS.! 1TS WHAT Jou

HISTERICAL RELKTNES AND NEED TO KNOK
WELL TELL You WHY Yo

‘SHOULD BE PRRALZED
WITH HELPLESS FERR!

SIDEWALKS AMD SHROUD-

THE NEXT VICTIM BE YOU 2>

b

A
7

Apologies to
Ralph Macchio

« Daniel: You're supposed to teach
and I'm supposed to learn. Four
homeworks I've been working on
IMP, | haven't learned a thing.

« Miyagi: You learn plenty.

« Daniel: | learn plenty, yeah. |
learned how to analyze IMP,
maybe. | evaluate your
commands, derive your
judgments, prove your soundness.
| learn plenty!

« Miyagi: Not everything is as
seems.

« Daniel: You’re not even relatively
complete! I'm going home, man.

« Miyagi: Daniel-san!

« Daniel: What?

o Miyagi: Come here. Show me
“compute the VC”.

The PC Weenies.
Homework

» Exciting,
practical HW 5
out today

« If you’ve been
skiving, now is a
great time to try
one out

« Easily applicable
to other research

www.peweenies.com

“Our results show that our fault tolerance test
program fails 807 of the time, so we've
decided to use it for only 20% of our tests.”

©2004Krishna M. Sadasivam

Abstract Interpretation
(Non-Standard Semantics)

a.k.a.
“Picking The Right Abstraction”

GRAPHIC VIOLENCE DOES T GLAMORIZE DOES \T CAUSE VIOLENCE? || THE TRICK 1S
IN THE MEDIA. VIOLENCE? SURE. DOES 1T | | L WELL, THNT'S TO ASK THE
\ DESENSITIZE US TO VIOLENCE] | HARD TO PROVE. RIGHT QUESTION .
V OF COURSE. DOES IT WELP G
i US TOLERRTE VIOLENCE 7 =R 5
— 3 You BET, DOES IT STUNT qAcan ” KN
QUR EMPATHY FoR OUR i B O Fa
Rpwa FELLOW BEINGS 7 HECKYES. | | W) ~) o\ o
q B - Fe
beo ®pig) / Qb 29
)
s

The Problem

« It is extremely useful to predict program behavior
statically (= without running the program)

- For optimizing compilers, program analyses, software
engineering tools, finding security flaws, etc.

» The semantics we studied so far give us the precise
behavior of a program

» However, precise static predictions are impossible
- The exact semantics is not computable

» We must settle for approximate, but correct, static
analyses (e.g. VC vs. WP)

The Plan

e We will introduce abstract
interpretation by example

« Starting with a miniscule language we
will build up to a fairly realistic
application

» Along the way we will see most of the
ideas and difficulties that arise in a big
class of applications

A Tiny Language

 Consider the following language of
arithmetic (“shriIMP”’?)

ei=njle e

» The denotational semantics of this language
[n]=n
[e1 * €] = [e,] x [e,]

» We’'ll take deno-sem as the “ground truth”

« For this language the precise semantics is
computable (but in general it’s not)

#7

An Abstraction

» Assume that we are interested not in the
value of the expression, but only in its sign:
- positive (+), negative (-), or zero (0)

» We can define an abstract semantics that
computes only the sign of the result

o: Exp = {-, 0, +}
®- 0 +
o(n) = sign(n) (; g 0
o(e; * &) = o(e;) ® o(e,) 0

| Saw the Sign
» Why did we want to compute the sign of an
expression?

- One reason: no one will believe you know
abstract interp if you haven’t seen the sign thing

» What could we be computing instead?

- Alex Aiken was here ...

YOUD STILL HRVE TO READ THE
BOOK AND TEML
THE COMPUTER
WHAT SO WANT

Correctness of Sign Abstraction

» We can show that the abstraction is correct
in the sense that it predicts the sign
[e] >0 < o(e) =+
[e]=0<o(e)=0
[e] <0< o(e) = -
» Our semantics is abstract but precise
* Proof is by structural induction on the
expression e
- Each case repeats similar reasoning

Another View of Soundness

« Link each concrete value to an abstract one:
B:Z—>{-0,+}
« This is called the abstraction function (j)
- This three-element set is the abstract domain
« Also define the concretization function (y):
v:{-, 0, +} = P(Z)

v+) = {ne€eZ|n>0}
v©0) = {0}
() = {ne€eZ|n<0}

Another View of Soundness 2

» Soundness can be stated succinctly
Ve € Exp. [e] € y(o(e))

(the real value of the expression is among the concrete
values represented by the abstract value of the expression)

o Let C be the concrete domain (e.g. Z) and A be the
abstract domain (e.g. {-, 0, +})
o Commutative diagram: Exp

[1 ‘
&

% A

Another View of Soundness 3

Consider the generic abstraction of an
operator

o(e; op &) = o(ey) op (&)

This is sound iff
Va,va,. y(a; 0p a;) D {nyopn, | nyey(ay), m,
€ 1(a)}

ceg. v(@;®a)D {n*n, I njey(@),n €

#13

Abstract Interpretation

« This is our first example of an abstract
interpretation

» We carry out computation in an abstract
domain

« The abstract semantics is a sound
approximation of the standard semantics

« The concretization and abstraction functions
establish the connection between the two
domains

Adding Unary Minus and Addition

» We extend the language to

-0 +
ei=nle *e|-e
; o+ 0
» We define o(- €) = & c(e)
2] 0 +
» Now we add addition: 0|- 0 +
ei=nle *e, |-ele+e +] 7 + o+

We define o(e, + €;) = o(e,) & o(e,)

Adding Addition

» The sign values are not closed under addition

» What should be the value of “+ @ -"?

« Start from the soundness condition:
y+@®-)2{n+ny I n>0,n,<0}=%

» We don’t have an abstract
- 0 + T
value whose concretization T T
includes Z, so we add one: ol- 0 + T
T (“top” = “don’t know”) |+ |T + + T
TITT T T,

Loss of Precision

Abstract computation might loose
information

[(1+2)+-3]=0
but o((1+2) + -3) =
(c(1) ® o(2)) ® o(-3) =
(+@+)@-=T
We loose some precision

But this will simplify the computation of the
abstract answer in cases when the precise
answer is not computable

Adding Division

« Straightforward except for division by 0
- We say that there is no answer in that case
-y+20)={n|in=n/0,n>03}=0

« Introduce L to be the abstraction of the ()

- We also use the same |- 0 + T 1

abstraction for -+ 0 - T L

non-termination! 0 1 1 1 1

1 = “nothing” + 0 + T 1

T = “something unknown” | T | T T T T L
L]l L L1 L],

The Abstract Domain

e Our abstract domain forms a lattice

« A partial order is induced by y
a; < a, iffy(a;) Cv(a,)
- We say that a, is more precise than a,!
 Every finite subset has a least-upper

bound (lub) and a greatest-lower bound (glb)

YES, CANINE JOu UMNE. TERR, 1 WAS WONDERING IF
b QUESTION? STOP THE

OF COVRSE WOT,

Lattice Facts

« A lattice is complete when every subset has
a lub and a gub
- Even infinite subsets!

« Every finite lattice is (trivially) complete

» Every complete lattice is a complete partial
order (recall: denotational semantics!)
- Since a chain is a subset

» Not every CPO is a complete lattice
- Might not even be a lattice

#20]
Lattice History From One, Many
« Early work in denotational semantics used » We can start with the abstraction function f
lattices B:C—A
- But it was later seen that only chains need to (maps a concrete value to the best abstract value)
have lubs - A must be a lattice
- And there was no need for T and glb » We can derive the concretization function y
. . , y: A= PC)
. Idn abstr?‘lctdmt’erlp:reta’t’lon we’ll use T to fa)={xeClpr)<al
enote on’t know » And the abstraction for sets o
- Corresponds to all values in the concrete domain a:PC)—A
ofS)=lb {B(x) | xeS}
#21] #22]
Example Galois Connections
» Consider our sigfn latotice « We can show that
+ n>
B(n) = 1{0 ;f n=0 - vy and o are monotonic (with C ordering on P(C))
ifn<0 -a(y@)=a forallae A
+ ofS)=lub { B(x) | x € S} - v (a(S) DS for all S € P(C)
- Example: Zg} (Zé; z:agiz}o} ol « Such a pair of functions is called a Galois
o () =lub 3 =1 connection
e y@={n|BMn)<a} - Between the lattices A and P(C)
- Example: y (+) = {nlBn) <+} = S —C
{nipm=+ ={nin>0} \
y(M={nIpnN)<T}=Z Yol
y(L)=(n B < 13=0 |

Correctness Condition

« In general, abstract interpretation satisfies
the following (amazingly common) diagram

Correctness Conditions

e Three conditions define a correct abstract
interpretation

1. o and y are monotonic

EXp ° A 2. o and y form a Galois connection
= “a and y are almost inverses”
I-1 Y a (<) 3. Abstraction of operations is correct
a; op a, = a(y(ay) op v(ay))
Cc—P()
S
Homework

o Homework 4 Due Today
» Homework 5 Out Today
o Read Ken Thompson Turing Award
 Project Proposal Due On Tuesday

