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» Many turned in HW3 code like this:

let rec matches re s = match re with

| Star(r) -> union (singleton s)

(matches (Concat(r,Star(r))) s)
» Which is a direct translation of:
R[r*]s = {s} U R[rr*]s
or, equivalently:

RIrls={s3U{y | IxeR[r]s Ay eR[r*]x}

» Why doesn’t this work?

Where Are We?

» Axiomatic Semantics: the meaning of a
program is what is true after it executes

» Hoare Triples: {A} c {B}

» Weakest Precondition: { WP(c,B) } c {B}

« Verification Condition: A=VC(c,B)=WP(c,b)
- Requires Loop Invariants
- Backward VC works for structured programs
- Forward VC (Symbolic Exec) works for assembly
- Here we are today ...

Today’s Cunning Plan

» Symbolic Execution & Forward VCGen
» Handling Exponential Blowup
- Invariants
- Dropping Paths
» VCGen For Exceptions
» VCGen For Memory (McCarthyism)
» VCGen For Structures (have a field day)
» VCGen For “Dictator For Life”

(double trouble)

Symex Summary

- Let x4, ..., X, be all the variables and a;;, ..., a, fresh
parameters

- Let ¥, be the state [x, := a,, ...,X, :=a,]
- Let () be the empty Inv set
« For all functions f in your program, prove:
Vay...a,. Zo(Preg) = VC(fenery, Zo, D)

« If you start the program by invoking any f in a state
that satisfies Pre;, then the program will execute
such that
- At all “inv e” the e holds, and
- If the function returns then Post; holds

» Can be proved w.r.t. a real interpreter (operational
semantics)

« Or via a proof technique called co-induction (or,
assume-guarantee)

Forward VCGen Example

« Consider the program
Precondition: x < 0
Loop: invx <6
if x > 5 goto End
X:i=Xx+1
goto Loop

End: return Postconditon: x = 6




Forward VCGen Example (2)

VX.
x<0=
X <6A
vx’
x <6=
X’>5=x"=6
A

e VC contains both proof obligations and
assumptions about the control flow

#7

VCs Can Be Large

» Consider the sequence of conditionals
(if x < 0 then x := - x); (if x < 3 then x += 3)
- With the postcondition P(x)

e The VCis
x<0A-x<3 =P(x+3) A
x<0A-x>3 =P(x) A
x20Ax<3 =P(x+3) A

x20Ax>3 =P(x)
» There is one conjunct for each path
= exponential number of paths!
- Conjuncts for infeasible paths have un-satisfiable guards!
Try with P(x) =x >3

VCs Can Be Exponential

» VCs are exponential in the size of the source
because they attempt relative completeness:
- Perhaps the correctness of the program must be argued

independently for each path

« It is unlikely that the programmer could write a
program by considering an exponential number of
cases
- But possible. Any examples? Any solutions?

PROBLEMS OFTEN LOOK
OVERNHELMING AT FIRST, || PROBLEMS INTO SMALL,
MANAGERBLE CHUNKS.
\F YOU DEAL WI\TH THOSE,
\17 YOURE DONE BERORE You

VCs Can Be Exponential

» VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be
argued independently for each path

« Standard Solutions:
- Allow invariants even in straight-line code

- And thus do not consider all paths
independently!

Invariants in Straight-Line Code

» Purpose: modularize the verification task
» Add the command “after c establish Inv”
- Same semantics as c (Inv is only for VC purposes)
VC(after c establish Inv, P) =4
VC(c,Inv) A VX;. Inv = P
« where x; are the ModifiedVars(c)
» Use when c contains many paths
after if x < 0 then x := - x establish x > 0;
if x<3thenx+=3 {P(x)}
e VC is now:

x<0=>-x20A x20=x20)A
UX. x20= (x<3=P(x+3) A x>3 = P(x))

Dropping Paths

« In absence of annotations, we can drop some paths
« VC(if E then ¢, else c,, P) = choose one of
- E= VC(cy, P) A=E = VC(c,, P) (drop no paths)
- E= VC(c, P) (drops “else” path!)
- —=E = VC(c,, P) (drops “then” path!)
» We sacrifice soundness! (we are now unsound)
- No more guarantees
- Possibly still a good debugging aid
e Remarks:
- A recent trend is to sacrifice soundness to increase
usability (e.g., Metal, ESP, even ESC)
- The PREfix tool considers only 50 non-cyclic paths
through a function (almost at random)




VCGen for Exceptions

» We extend the source language with
exceptions without arguments (cf. HW2):
- throw throws an exception
- trycycatchc,  executes ¢, if ¢, throws

» Problem:
- We have non-local transfer of control
- What is VC(throw, P) ?

VCGen for Exceptions

» We extend the source language with

- throw throws an exception

- tryc,catchc,  executes ¢, if ¢, throws
 Problem:

- We have non-local transfer of control

- What is VC(throw, P) ?
« Standard Solution: use 2 postconditions

- One for normal termination

- One for exceptional termination

exceptions without arguments (cf. HW2):

VCGen for Exceptions (2)
» VC(c, P, Q) is a precondition that makes c

with P or throw an exception with Q
» Rules

VC(skip, P, Q) =P

VC(c,; ¢y, P, Q) = VC(cy, VC(cy, P, Q), Q)

VC(throw, P, Q) =Q

VC(try ¢, finally ¢,, P, Q) =?

either not terminate, or terminate normally

VC(try ¢, catch ¢,, P, Q) = VC(c;, P, VC(c,, P, Q)

VCGen Finally

e Given these:
VC(C1; CZ) P7 Q) = VC(C17 VC(CZ) P) Q)7 Q)

« Finally is somewhat like “if”:
VC(try ¢, finally ¢,, P, Q) =
VC(c,, VC(c,, P, Q), true) A
VC(c,, true, VC(c,, Q, Q))
» Which reduces to:

VC(C1) VC(CZ) P) Q)) VC(CZ) Q) Q))

VC(try ¢, catch ¢,, P, Q) = VC(cy, P, VC(cy, P, Q)

Hoare Rules and the Heap

« When is the following Hoare triple valid?
{A}*>x:=5{*+*y=10}
* Ashould be “*y =5o0rx=y”
» The Hoare rule for assignment would give us:
- [5/*x](*x +*y =10) =5 +*y =10 =
-*y =5 (we lost one case)
o Why didn’t this work?

OH GOOD, A TRUE OR | AT LAST, SOME CLARNTY! EVERY
FALSE TEST/ | SENTENCE IS EITHER PURE
j — . SWEET TRUTH OR. A VILE,

I CONTEMPTIBLE LIE/ ONE
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Hoare Rules and the Heap

» When is the following Hoare triple valid?
{A}*x:=5{*+*y =10}
o Ashouldbe “*y=5o0rx=y”

» The Hoare rule for assignment would give us:

[5/*x](*x + *y = 10)

=5+* =10

=*y =5 (we lost one case)
» Why didn’t this work?




Handling The Heap

» We do not yet have a way to talk about
memory (the heap, pointers) in assertions
» Model the state of memory as a symbolic
mapping from addresses to values:
- If A denotes an address and M is a memory state
then:
- sel(M,A) denotes the contents of the memory
cell
- upd(M,A,V) denotes a new memory state
obtained from M by writing V at address A

More on Memory

» We allow variables to range over memory
states

- So we can quantify over all possible memory
states

« Use the special pseudo-variable p in
assertions to refer to the current memory

» Example:
Vi.i20Ai<5=sel(n, A+i)>0
says that entries 0..4 in array A are positive

Hoare Rules: Side-Effects

» To model writes we use memory expressions
- A memory write changes the value of memory

{ Blupd(n, A, E)/u] }*A:=E{B}

« Important technique: treat memory as a whole

« And reason later about memory expressions with
inference rules such as (McCarthy Axioms, ~‘67):

if A=A,

Sel(upd(M: A17 V): AZ) = if A=A
1 2

{ sel(M, A;)

Memory Aliasing

o Consider again: { A} *x :=5{*x+*y =10}
« We obtain:
A = [upd(y, X, 5)/u] (*x +*y = 10)

= [upd(p, X, 5)/p] (sel(p, x) + sel(u, y) = 10)
(1) =sel(upd(u, x, 5), x) + sel(upd(y, x, 5), y) =10

=5 + sel(upd(y, X, 5), y) =10

=if x=ythen5+5 =10 else 5 + sel(n, y) = 10
(2) =x=yor*y=5
» To (1) is theorem generation
e From (1) to (2) is theorem proving

Alternative Handling for Memory

» Reasoning about aliasing can be expensive (it
is NP-hard)
» Sometimes completeness is sacrificed with

the following (approximate) rule:
Vv if A, = (obviously) A,
sel(M, A,) if A, = (obviously) A,
p otherwise (p is a fresh
new parameter)

« The meaning of “obvious” varies:

« The addresses of two distinct globals are #

» The address of a global and one of a local are =

sel(upd(M, A, V), A)) =

« “PREfix” and GCC use such schemes

VCGen Overarching Example

» Consider the program
- Precondition: B : bool A A : array(bool, L)
1:1:=0
R:=B
3:inv1>0 AR : bool
if 1> Lgoto9
assert saferd(A + 1)
T:=*A+1)
l:=1+1
R:=T
goto 3
9: return R
- Postcondition: R : bool




VCGen Overarching Example

VA. VB. VL. Vu
B : bool A A : array(bool, L) =
0>0AB: bool A
vl. VR.
| >0AR: bool =
| >L= R: bool
A
| <L=saferd(A+1) A
I+1>0A
sel(u, A + 1) : bool
» VC contains both proof obligations and assumptions
about the control flow

Mutable Records - Two Models

e Letr: RECORD {f1:T1;f2:T23}END
« For us, records are reference types
» Method 1: one “memory” for each record
- One index constant for each field
- r.flis sel(r,f1) and r.f1 := Eisr := upd(r,f1,E)
» Method 2: one “memory” for each field
- The record address is the index
- r.flissel(f1,r) and r.f1 := Eis f1 := upd(f1,r,E)
» Only works in strongly-typed languages like Java
- Fails in C where &r.f2 = &r + sizeof(T1) + sizeof(T2)

ii25) 26}
VC as a “Semantic Checksum” VC as a “Semantic Checksum” (2)
» Weakest preconditions are an » Consider the “assembly x:i=4
expression of the program’s semantics: language™ program to =y —m
- Two equivalent programs have logically the right assert x : bool
equivalent WPs X 1= not x
- No matter how different their syntax is! assert x
« High-level type checking is not appropriate here
» VC are almost as powerful « The VC is: 4 == 5 : bool A not (4 == 5)
» No confusion from reuse of x with different types
27 28}

Invariance of VC Across
Optimizations

» VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations

- Register allocation, instruction scheduling
- CSE, constant and copy propagation
- Dead code elimination

» We have identical VCs whether or not an

optimization has been performed
- Preserves syntactic form, not just semantic meaning!

» This can be used to verify correctness of compiler

optimizations (Translation Validation)

VC Characterize a Safe
Interpreter

» Consider a fictitious “safe” interpreter

- As it goes along it performs checks (e.g. “safe to read
from this memory addr”, “this is a null-terminated
string”, “I have not already acquired this lock”)

- Some of these would actually be hard to implement

» The VC describes all of the checks to be performed
- Along with their context (assumptions from conditionals)
- Invariants and pre/postconditions are used to obtain a

finite expression (through induction)

» VC is valid = interpreter never fails
- We enforce same level of “correctness”
- But better (static + more powerful checks)




VC Big Picture

« Verification conditions
- Capture the semantics of code + specifications
- Language independent

- Can be computed backward/forward on
structured/unstructured code

- Make Axiomatic Semantics practical
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Invariants Are Not Easy

 Consider the following code from QuickSort
int partition(int *a, int Ly, int Hy, int pivot) {
int L=Ly, H=H
while(L < H) {
while(a[L] < pivot) L ++;
while(a[H] > pivot) H --;
if(L < H) { swap a[L] and a[H] }
3
return L
3
» Consider verifying only memory safety

» What is the loop invariant for the outer loop ?

Homework

o Homework 4 Due Thursday

» Read Cousot & Cousot article

» Read Abramski article

» Project Proposal Due In One Week




