Axiomatic
Semantics Ill

The
Verification
Crusade

G0 ON, EXPLAN THE
SEMANTICS O YOUR MoM

TM NOT BAD. - EXUBERANT
TM JST...0M.. THERE'S NOTHING
WRONS WITH
"G, BEING EXOBERANT/
LI}
%, @5
W, 2
__:: ll_ &

A AIKEs, SIE QT
X HER WIND BACK.
3 AND SHES

GAINING !

Wei Hu Memorial Homework Award

» Many turned in HW3 code like this:

let rec matches re s = match re with

| Star(r) -> union (singleton s)

(matches (Concat(r,Star(r))) s)
» Which is a direct translation of:
R[r*]s = {s} U R[rr*]s
or, equivalently:

RIrls={s3U{y | IxeR[r]s Ay eR[r*]x}

» Why doesn’t this work?

Where Are We?

» Axiomatic Semantics: the meaning of a
program is what is true after it executes

» Hoare Triples: {A} c {B}

» Weakest Precondition: { WP(c,B) } c {B}

« Verification Condition: A=VC(c,B)=WP(c,b)
- Requires Loop Invariants
- Backward VC works for structured programs
- Forward VC (Symbolic Exec) works for assembly
- Here we are today ...

Today’s Cunning Plan

» Symbolic Execution & Forward VCGen
» Handling Exponential Blowup
- Invariants
- Dropping Paths
» VCGen For Exceptions
» VCGen For Memory (McCarthyism)
» VCGen For Structures (have a field day)
» VCGen For “Dictator For Life”

(double trouble)

Symex Summary

- Let x4, ..., X, be all the variables and a;;, ..., a, fresh
parameters

- Let ¥, be the state [x, := a,, ...,X, :=a,]
- Let () be the empty Inv set
« For all functions f in your program, prove:
Vay...a,. Zo(Preg) = VC(fenery, Zo, D)

« If you start the program by invoking any f in a state
that satisfies Pre;, then the program will execute
such that
- At all “inv e” the e holds, and
- If the function returns then Post; holds

» Can be proved w.r.t. a real interpreter (operational
semantics)

« Or via a proof technique called co-induction (or,
assume-guarantee)

Forward VCGen Example

« Consider the program
Precondition: x < 0
Loop: invx <6
if x > 5 goto End
X:i=Xx+1
goto Loop

End: return Postconditon: x = 6

Forward VCGen Example (2)

VX.
x<0=
X <6A
vx’
x <6=
X’>5=x"=6
A

e VC contains both proof obligations and
assumptions about the control flow

#7

VCs Can Be Large

» Consider the sequence of conditionals
(if x < 0 then x := - x); (if x < 3 then x += 3)
- With the postcondition P(x)

e The VCis
x<0A-x<3 =P(x+3) A
x<0A-x>3 =P(x) A
x20Ax<3 =P(x+3) A

x20Ax>3 =P(x)
» There is one conjunct for each path
= exponential number of paths!
- Conjuncts for infeasible paths have un-satisfiable guards!
Try with P(x) =x >3

VCs Can Be Exponential

» VCs are exponential in the size of the source
because they attempt relative completeness:
- Perhaps the correctness of the program must be argued

independently for each path

« It is unlikely that the programmer could write a
program by considering an exponential number of
cases
- But possible. Any examples? Any solutions?

PROBLEMS OFTEN LOOK
OVERNHELMING AT FIRST, || PROBLEMS INTO SMALL,
MANAGERBLE CHUNKS.
\F YOU DEAL WI\TH THOSE,
\17 YOURE DONE BERORE You

VCs Can Be Exponential

» VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be
argued independently for each path

« Standard Solutions:
- Allow invariants even in straight-line code

- And thus do not consider all paths
independently!

Invariants in Straight-Line Code

» Purpose: modularize the verification task
» Add the command “after c establish Inv”
- Same semantics as c (Inv is only for VC purposes)
VC(after c establish Inv, P) =4
VC(c,Inv) A VX;. Inv = P
« where x; are the ModifiedVars(c)
» Use when c contains many paths
after if x < 0 then x := - x establish x > 0;
if x<3thenx+=3 {P(x)}
e VC is now:

x<0=>-x20A x20=x20)A
UX. x20= (x<3=P(x+3) A x>3 = P(x))

Dropping Paths

« In absence of annotations, we can drop some paths
« VC(if E then ¢, else c,, P) = choose one of
- E= VC(cy, P) A=E = VC(c,, P) (drop no paths)
- E= VC(c, P) (drops “else” path!)
- —=E = VC(c,, P) (drops “then” path!)
» We sacrifice soundness! (we are now unsound)
- No more guarantees
- Possibly still a good debugging aid
e Remarks:
- A recent trend is to sacrifice soundness to increase
usability (e.g., Metal, ESP, even ESC)
- The PREfix tool considers only 50 non-cyclic paths
through a function (almost at random)

VCGen for Exceptions

» We extend the source language with
exceptions without arguments (cf. HW2):
- throw throws an exception
- trycycatchc, executes ¢, if ¢, throws

» Problem:
- We have non-local transfer of control
- What is VC(throw, P) ?

VCGen for Exceptions

» We extend the source language with

- throw throws an exception

- tryc,catchc, executes ¢, if ¢, throws
 Problem:

- We have non-local transfer of control

- What is VC(throw, P) ?
« Standard Solution: use 2 postconditions

- One for normal termination

- One for exceptional termination

exceptions without arguments (cf. HW2):

VCGen for Exceptions (2)
» VC(c, P, Q) is a precondition that makes c

with P or throw an exception with Q
» Rules

VC(skip, P, Q) =P

VC(c,; ¢y, P, Q) = VC(cy, VC(cy, P, Q), Q)

VC(throw, P, Q) =Q

VC(try ¢, finally ¢,, P, Q) =?

either not terminate, or terminate normally

VC(try ¢, catch ¢,, P, Q) = VC(c;, P, VC(c,, P, Q)

VCGen Finally

e Given these:
VC(C1; CZ) P7 Q) = VC(C17 VC(CZ) P) Q)7 Q)

« Finally is somewhat like “if”:
VC(try ¢, finally ¢,, P, Q) =
VC(c,, VC(c,, P, Q), true) A
VC(c,, true, VC(c,, Q, Q))
» Which reduces to:

VC(C1) VC(CZ) P) Q)) VC(CZ) Q) Q))

VC(try ¢, catch ¢,, P, Q) = VC(cy, P, VC(cy, P, Q)

Hoare Rules and the Heap

« When is the following Hoare triple valid?
{A}*>x:=5{*+*y=10}
* Ashould be “*y =5o0rx=y”
» The Hoare rule for assignment would give us:
- [5/*x](*x +*y =10) =5 +*y =10 =
-*y =5 (we lost one case)
o Why didn’t this work?

OH GOOD, A TRUE OR | AT LAST, SOME CLARNTY! EVERY
FALSE TEST/ | SENTENCE IS EITHER PURE
j — . SWEET TRUTH OR. A VILE,

I CONTEMPTIBLE LIE/ ONE
OR THE OTHER! NOTHING
IN BETWEEN !

Hoare Rules and the Heap

» When is the following Hoare triple valid?
{A}*x:=5{*+*y =10}
o Ashouldbe “*y=5o0rx=y”

» The Hoare rule for assignment would give us:

[5/*x](*x + *y = 10)

=5+* =10

=*y =5 (we lost one case)
» Why didn’t this work?

Handling The Heap

» We do not yet have a way to talk about
memory (the heap, pointers) in assertions
» Model the state of memory as a symbolic
mapping from addresses to values:
- If A denotes an address and M is a memory state
then:
- sel(M,A) denotes the contents of the memory
cell
- upd(M,A,V) denotes a new memory state
obtained from M by writing V at address A

More on Memory

» We allow variables to range over memory
states

- So we can quantify over all possible memory
states

« Use the special pseudo-variable p in
assertions to refer to the current memory

» Example:
Vi.i20Ai<5=sel(n, A+i)>0
says that entries 0..4 in array A are positive

Hoare Rules: Side-Effects

» To model writes we use memory expressions
- A memory write changes the value of memory

{ Blupd(n, A, E)/u] }*A:=E{B}

« Important technique: treat memory as a whole

« And reason later about memory expressions with
inference rules such as (McCarthy Axioms, ~‘67):

if A=A,

Sel(upd(M: A17 V): AZ) = if A=A
1 2

{ sel(M, A;)

Memory Aliasing

o Consider again: { A} *x :=5{*x+*y =10}
« We obtain:
A = [upd(y, X, 5)/u] (*x +*y = 10)

= [upd(p, X, 5)/p] (sel(p, x) + sel(u, y) = 10)
(1) =sel(upd(u, x, 5), x) + sel(upd(y, x, 5), y) =10

=5 + sel(upd(y, X, 5), y) =10

=if x=ythen5+5 =10 else 5 + sel(n, y) = 10
(2) =x=yor*y=5
» To (1) is theorem generation
e From (1) to (2) is theorem proving

Alternative Handling for Memory

» Reasoning about aliasing can be expensive (it
is NP-hard)
» Sometimes completeness is sacrificed with

the following (approximate) rule:
Vv if A, = (obviously) A,
sel(M, A,) if A, = (obviously) A,
p otherwise (p is a fresh
new parameter)

« The meaning of “obvious” varies:

« The addresses of two distinct globals are #

» The address of a global and one of a local are =

sel(upd(M, A, V), A)) =

« “PREfix” and GCC use such schemes

VCGen Overarching Example

» Consider the program
- Precondition: B : bool A A : array(bool, L)
1:1:=0
R:=B
3:inv1>0 AR : bool
if 1> Lgoto9
assert saferd(A + 1)
T:=*A+1)
l:=1+1
R:=T
goto 3
9: return R
- Postcondition: R : bool

VCGen Overarching Example

VA. VB. VL. Vu
B : bool A A : array(bool, L) =
0>0AB: bool A
vl. VR.
| >0AR: bool =
| >L= R: bool
A
| <L=saferd(A+1) A
I+1>0A
sel(u, A + 1) : bool
» VC contains both proof obligations and assumptions
about the control flow

Mutable Records - Two Models

e Letr: RECORD {f1:T1;f2:T23}END
« For us, records are reference types
» Method 1: one “memory” for each record
- One index constant for each field
- r.flis sel(r,f1) and r.f1 := Eisr := upd(r,f1,E)
» Method 2: one “memory” for each field
- The record address is the index
- r.flissel(f1,r) and r.f1 := Eis f1 := upd(f1,r,E)
» Only works in strongly-typed languages like Java
- Fails in C where &r.f2 = &r + sizeof(T1) + sizeof(T2)

ii25) 26}
VC as a “Semantic Checksum” VC as a “Semantic Checksum” (2)
» Weakest preconditions are an » Consider the “assembly x:i=4
expression of the program’s semantics: language™ program to =y —m
- Two equivalent programs have logically the right assert x : bool
equivalent WPs X 1= not x
- No matter how different their syntax is! assert x
« High-level type checking is not appropriate here
» VC are almost as powerful « The VC is: 4 == 5 : bool A not (4 == 5)
» No confusion from reuse of x with different types
27 28}

Invariance of VC Across
Optimizations

» VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations

- Register allocation, instruction scheduling
- CSE, constant and copy propagation
- Dead code elimination

» We have identical VCs whether or not an

optimization has been performed
- Preserves syntactic form, not just semantic meaning!

» This can be used to verify correctness of compiler

optimizations (Translation Validation)

VC Characterize a Safe
Interpreter

» Consider a fictitious “safe” interpreter

- As it goes along it performs checks (e.g. “safe to read
from this memory addr”, “this is a null-terminated
string”, “I have not already acquired this lock”)

- Some of these would actually be hard to implement

» The VC describes all of the checks to be performed
- Along with their context (assumptions from conditionals)
- Invariants and pre/postconditions are used to obtain a

finite expression (through induction)

» VC is valid = interpreter never fails
- We enforce same level of “correctness”
- But better (static + more powerful checks)

VC Big Picture

« Verification conditions
- Capture the semantics of code + specifications
- Language independent

- Can be computed backward/forward on
structured/unstructured code

- Make Axiomatic Semantics practical

MISS WORMWOOD,
1 HAE A
QUESTION ABWT
THIS MATY
LESSON

GINEN THAT, SOONER OR TURN TO NOBODY LIKES US
LATER, WERE AL JUST PAGE 3, "BIG PICTURE
GOING TO DIE, WHAT'S CLASS, PEOPLE

THE PQINT OF LEARNING

We L
£3 1

%

Invariants Are Not Easy

 Consider the following code from QuickSort
int partition(int *a, int Ly, int Hy, int pivot) {
int L=Ly, H=H
while(L < H) {
while(a[L] < pivot) L ++;
while(a[H] > pivot) H --;
if(L < H) { swap a[L] and a[H] }
3
return L
3
» Consider verifying only memory safety

» What is the loop invariant for the outer loop ?

Homework

o Homework 4 Due Thursday

» Read Cousot & Cousot article

» Read Abramski article

» Project Proposal Due In One Week

