Introduction to
Denotational Semantics

Class Likes/Dislikes Survey

» “would change [the bijection question] to be

one that still tested students' recollection of

set theory but that didn't take as much time”

“| liked the bijection proof in the homework. |

thought it ended up being pretty neat.”

* “my guess is the student would benefit more
from a rephrasing or alternate explanation”

» “l don't need to hear the things explained in
another way”

Dueling Semantics

+ Operational semantics is
- simple
- of many flavors (natural, small-step, more or less
abstract)
- not compositional
- commonly used in the real (modern research) world
- Denotational semantics is

- mathematical ﬂthe meaning of a syntactic expression is
a mathematical object)

- compositional

+ Denotational semantics is also called: fixed-point
semantics, mathematical semantics, Scott-
Strachey semantics

Typical Student Reaction To
Denotation Semantics

= Y

Denotational Semantics
Learning Goals

« DS is compositional

» When should | use DS?

 In DS, meaning is a “math object”

e DS uses L (“bottom”) to mean non-
termination

« DS uses fixed points and domains to
handle while
- This is the tricky bit

. ,You’re On Jeopardy!:
Alex Trebek: |




DS In The Real World

» ADA was formally specified with it

» Handy when you want to study non-trivial
models of computation
- e.g., “actor event diagram scenarios”,

process calculi

» Nice when you want to compare a
program in Language 1 to a program in
Language 2

Deno-Challenge

 You may skip the homework
assignment of your choice if you can
find a post-1995 paper in a first- or
second-tier PL conference that uses
denotational semantics.

Foreshadowing

» Denotational semantics assigns meanings to
programs
» The meaning will be a mathematical object
- A number acz
- A boolean b € {true, false}
- A function c: X — (XU {non-terminating})
» The meaning will be determined compositionally

- Denotation of a command is based on the denotations of
its immediate sub-commands (= syntax-directed)

New Notation

« ‘Cause, why not?

[T = “means” or “denotes”
» Example:

[foo] = “denotation of foo”

[3<5] =true

[3+5] =8

» Sometimes we write A[-] for arith, B[]
for boolean, C[:] for command

Rough Idea of
Denotational Semantics

+ The meaning of an arithmetic expression e in
state o is a number n
+ So, we try to define Afe] as a function that
maps the current state to an integer:
A[-] : Aexp = (£ — Z)
+ The meaning of boolean expressions is defined
in a similar way
B[] : Bexp — (£ — {true, false})
+ All of these denotational function are total
- Defined for all syntactic elements

- For other languag[es it might be convenient to define
the semantics only for well-typed elements

Denotational Semantics of
Arithmetic Expressions

+ We inductively define a function
Al-]: Aexp = (£ — Z)

Aln] o = the mteger denoted by literal n
Alx] o = o(x

Ale+e)] o = A[[e1]]c + Ale,]o

Ale;-e,] o = Aleq]o - Ale;]o

Ale,*e;] o = Ale]o * Ale,]o

+ This is a total function (= defined for all
expressions)




Denotational Semantics of
Boolean Expressions

+ We inductively define a function
B[-] : Bexp — (£ — {true, false})

B[true]o = true

B[false]o = false

Blb; A byJo  =B[b;] o AB[b,] &
Ble, =e,Jc =if Ale;J o=Afe,] o

then true else false

Seems Easy So Far

LSemANTiCSY
of a Structule
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By Tom 7

]] — carpot

]I = bowling pin

Denotational Semantics for
Commands

* Running a command c starting from a
state o yields another state &'

* So, we try to define C[c] as a function
that maps o to o'

C[]: Comm — (£ — %)

« Will this work? Bueller?

1 = Non-Termination

+ We introduce the special element 1 to
denote a special resulting state that
stands for non-termination

+ For any set X, we write X, to denote X
u{L}

Convention:

whenever f € X — X, we extend f to
X, =X, sothat f(L) =1
- This is called strictness

Denotational Semantics of

Commands
+ We try:
C[] : Comm — (£ = X))
C[skip] o =0
Clx:=¢€] o = o[x := Ale] o]
Cles ¢l o = C[c;] (Ceq] o)

C[if b then ¢, else ¢;] &
if B[b]o then C[c,]o else C[c,]o
Clwhilebdo c] & =7

Examples

* C[x:=2; x:=1] o =
o[x :=1]
« C[if true then x:=2; x:=1 else ..] o =
o[x :=1]
+ The semantics does not care about
intermediate states
* We haven't used L yet




Denotational Semantics of WHILE

+ Notation: W = C[while b do (]
+ Idea: rely on the equivalence (from last time)
while b do c ~ if b then c; while b do c else skip
* Try
W(o) = if B[b]o then W(C[c]o) else o

+ This is called the unwinding equation
+ It is not a good denotation of W because:
- It defines W in terms of itself
- It is not evident that such a W exists
- It does not describe W uniquely
- It is not compositional

More on WHILE

+ The unwinding equation does not specify W
uniquely

+ Take C[while true do skip]

+ The unwinding equation reduces to W(c) =

W(o), which is satisfied by every function!

Take C[while x # 0 do x := x - 2]

The following solution satisfies equation (for
any c')

Denotational Game Plan

« Since WHILE is recursive

- always have something like: W(c) = F(W(c))
» Admits many possible values for W(c)
We will order them
- With respect to non-termination
And then find the least fixed point
LFP W(s)=F(W(c)) == meaning of “while"

WHILE Semantics

+ Define W,: £ — %, (for k € N) such that

G if "while b do c" in state &
terminates in fewer than k
iterations in state ¢’

L otherwise
* We can define the W, functions as
follows:

Wi (o) =

Wo(o)= L
Wote) < {WH(C[[C]]G) if B[b]o for k > 1
o) = c otherwise

WHILE Semantics

* How do we get W from W,?
W(o) = o if kKW (c)=c#L
711 otherwise
+ This is a valid compositional definition of W
- Depends only on C[c] and B[b]
+ Try the examples again:
- For C[while true do skip]
Wi (o) = L forall k, thus W(c) = L
- For C[while x # 0 do x := x - 2]
_ro[x:=0] ifo(x)=2kAc(x)>0
Wie) = { 1L otherwise

More on WHILE

+ The solution is not quite satisfactory
because
- It has an operational flavor
- It does not generalize easily to more
complicated semantics (e.g., higher-order
functions)
+ However, precisely due to the
operational flavor this solution is easy to
prove sound w.r.t operational semantics




That Wasn’t Good Enough!?

Simple Domain Theory

+ Consider programs in an eager,
deterministic language with one variable
called "x"

- All these restrictions are just to simplify the
examples

+ A state o is just the value of x
- Thus we can use Z instead of

+ The semantics of a command give the
value of final x as a function of input x
Clc]: Z2—17Z,

Examples - Revisited

+ Take C[while true do skip]
- Unwinding equation reduces to W(x) = W(x)
- Any function satisfies the unwinding equation
- Desired solution is W(x) = L
+ Take C[while x # 0 do x :=x - 2]
- Unwinding equation:
W(x) = if x # 0 then W(x - 2) else x
- Solutions (for all valuesn, m e Z,):
W(x) = if x > 0 then
if x even then 0 else n
else m
- Desired solution: W(x) = if x > 0 A x even then 0 else L

An Ordering of Solutions

+ The desired solution is the one in which all the
arbitrariness is replaced with non-termination

- The arbitrary values in a solution are not uniquely
determined by the semantics of the code

+ We introduce an ordering of semantic functions
s letf,geZ—17Z,
+ DefinefC g as

Vx € Z. f(x) = L or f(x) = g(x)

- A "smaller” function terminates at most as often,
and when it terminates it produces the same result

Alternative Views of Function
Ordering

+ A semantic function f € Z — 7Z, can be
written as S; C Z x Z as follows:
Ss={(xy) I XEZ, f(x)=y= L}

- A list of the “terminating” values for the
function

« If f C g then
- 5CS, (and viceversa)
- We say that g refines f
- We say that f approximates g
- We say that g provides more information than f

The "Best"” Solution

+ Consider again C[while x #0 do x := x - 2]

- Unwinding equation:
W(x) = if x # 0 then W(x - 2) else x

+ Not all solutions are comparable:

W(x) = if x > 0 then if x even then 0 else 1 else 2

W(x) = if x > 0 then if x even then 0 else L else 3

W(x) = if x > 0 then if x even then 0 else L else L
(last one is least and best)

+ Is there always a least solution?
+ How do we find it?

« If only we had a general framework for answering

these questions ...




Fixed-Point Equations

+ Consider the general unwinding equation for while
while b do c = if b then ¢; while b do c else skip
+ We define a context C (command with a hole)
C = if b then c; e else skip
while b do ¢ = C[while b do c]
- The grammar for C does not contain “while b do c"
+ We can find such a (recursive) context for any
looping construct
- Consider: fact n = if n =0 then 1 else n * fact (n - 1)
-C=An.ifn=0thentelsen*e(n-1)
- fact = C [ fact ]

Fixed-Point Equations

+ The meaning of a context is a semantic functional
F:(Z—7,)— (Z— Z,) such that
F[CIW]] = F [W]
- For "while": C = if b then c; e else skip
F w x = if [b] x then w ([c] x) else x
- F depends only on [c] and [b]
+ We can rewrite the unwinding equation for while
- W(x) = if [b] x then W([c] x) else x
- or, Wx=FWxforall x,
- or, W =F W (by function equality)

Fixed-Point Equations

- The meaning of "while" is a solution for W = F W
+ Such a W is called a fixed point of F

+ We want the least fixed point

- We need a general way to find least fixed points

+ Whether such a least fixed point exists depends on
the properties of function F

- Counterexample: F w x = if wx = L then O else L

- Assume W is a fixed point

-FWx=Wx=if Wx=_1thenOelse L

- Pickan x, thenif Wx = L thenWx=0else Wx= L
- Contradiction. This F has no fixed point!

Can We Solve This?

+ Good news: the functions F that
correspond to contexts in our language
have least fixed points!

+ The only way F w x uses w is by invoking it

« If any such invocation diverges, then F w x

diverges!

It turns out: F is monotonic, continuous

- Not shown here!

The Fixed-Point Theorem

« If F is a semantic functional corresponding to a
context in our language
- F is monotonic and continuous (we assert)
- For any fixed-point G of F and k € N
Fk(Ax.L) C G
- The least of all fixed points is
L, F¥(x. L)
+ Proof (not detailed in the lecture):
1. By mathematical induction on k.
Base: FOAx. L) =2x. L C G
Inductive: F<"'(Ax. L) = F(FK(Ax.L)) CF(G) =G
2. Suffices to show that L, F¥(Ax.L ) is a fixed-point
F(Uy, F*(X. L)) = U FT(x. L) = L, FY(x. L)

WHILE Semantics

+ We can use the fixed-point theorem to write the

denotational semantics of while:
[while b do c] = L, F¥ (Ax. L)
where F f x = if [b] x then f ([c] x) else x

+ Example: [while true do skip] = Ax.L
+ Example: [while x # 0 then x :=x - 1]

-F (. L)x=if x=0thenxelse L
- F2(Ax.L)x=if x=0thenxelseif x-1 =0 then x - 1
else L
=if1>x>0thenOelse L
- P (x.L)x=if2>x>0thenOelse L
- LFP; =if x > 0 then 0 else L

+ Not easy to find the closed form for general LFPs!




Discussion

+ We can write the denotational semantics but
we cannot always compute it.
- Otherwise, we could decide the halting problem
- H is halting for input 0 iff [H] 0 = L

+ We have derived this for programs with one
variable
- Generalize to multiple variables, even to

variables ranging over richer data types, even
higher-order functions: domain theory

Can You Remember?

Recall: Learning Goals

« DS is compositional

» When should | use DS?

 In DS, meaning is a “math object”

e DS uses L (“bottom”) to mean non-
termination

« DS uses fixed points and domains to
handle while
- This is the tricky bit

Homework

» Homework 2 Due Today

o Homework 3 Out Today

- Not as long as it looks - separated out every
exercise sub-part for clarity.

- Your denotational answers must be
compositional (e.g., W,(c) or LFP)

» Read Winskel Chapter 6
» Read Hoare article
» Read Floyd article




