Proof Techniques
for Operational
Semantics

Wei Hu Memorial Lecture

« | will give a completely optional bonus survey
lecture: “A Recent History of PL in Context”
- It will discuss what has been hot in various PL subareas
in the last 20 years

- This may help you get ideas for your class project or
locate things that will help your real research

- Put a tally mark on the sheet if you’d like to attend
that day - I’'ll pick a most popular day

« Likely Topics:

- Bug-Finding, Software Model Checking, Automated
Deduction, Proof-Carrying Code, PL/Security, Alias
Analysis, Constraint-Based Analysis, Run-Time Code
Generation

Today’s Cunning Plan

» Why Bother?
« Mathematical Induction
e Well-Founded Induction

e Structural Induction

- “Induction On The Structure Of
The Derivation”

Why Bother?

» | am loathe to teach you anything that |
think is a waste of your time.

» Thus | must convince you that inductive
opsem proof techniques are useful.
- Recall class goals: understand PL research

techniques and apply them to your research

« This should also highlight where you
might use such techniques in your own
research.

\ny counter-sye

Reviewers

Classic Example (Schema)

» “A well-typed program cannot go wrong.”

- Robin Milner
« When you design a new type system, you must show
that it is safe (= that the type system is sound with
respect to the operational semantics).
A Syntactic Approach to Type Soundness. Andrew K.
Wright, Matthias Felleisen, 1992.

- Type preservation: “if you have a well-typed program
and apply an opsem rule, the result is well-typed.”

- Progress: “a well-typed program will never get stuck in a
state with no applicable opsem rules”

» Done for real languages: SML/NJ, SPARK ADA, Java
- Plus basically every toy PL research language ever.

Classic Examples
CCured Project (Berkeley)

- A program that is instrumented with CCured run-time checks (=
“adheres to the CCured type system”) will not segfault (= “the x86
opsem rules will never get stuck”).

Vault Language (Microsoft Research)

- A well-typed Vault program does not leak any tracked resources and
invokes tracked APIs correctly (e.g., handles IRQL correctly in
asynchronous Windows device drivers, cf. Capability Calculus)

RC - Reference-Counted Regions For C (Intel Research)

- A well-typed RC program gains the speed and convenience of region-
based memory management but need never worry about freeing a
region too early (run-time checks).

Typed Assembly Language (Cornell)

- Reasonable C programs (e.g., device drivers) can be translated to

TALx86. Well-typed TALx86 programs are type- and memory-safe.
Secure Information Flow (Many, e.g,. Volpano et al. ‘96)

- Lattice model of secure flow analysis is phrased as a type system, so
type soundness = noninterference.

Recent Examples

“The proof proceeds by rule induction over the
target term producing translation rules.”

- Chakravarty et al. ’05

“Type preservation can be proved by standard
induction on the derivation of the evaluation
relation.”

- Hosoya et al. ’05

“Proof: By induction on the derivation of N || W.”
- Sumi and Pierce ’05

Method: chose four POPL 2005 papers at random,
the three above mentioned structural induction.

Induction

» Most important technique for studying
the formal semantics of prog languages

- If you want to perform or understand PL
research, you must grok this!

» Mathematical Induction (simple)
» Well-Founded Induction (general)
o Structural Induction (widely used in PL)

Mathematical Induction

» Goal: prove Vn € N. P(n)
+ Base Case: prove P(0)

+ Inductive Step:
- Prove V n>0. p(n) = p(n+1)
- "Pick arbitrary n, assume p(n), prove p(n+1)"

Why Does It Work?

e There are no infinite descending chains of
natural numbers

 For any n, P(n) can be obtained by
starting from the base case and applying
n instances of the inductive step

Well-Founded Induction

+ Arelation < c A x A is well-founded if there are
no infinite descending chains in A
- Example: <, ={ (x, x+1) | x e N}
- the predecessor relation
- Example: < ={(x,y) | X,y e N andx <y}
- Well-founded induction:
- To prove Vx e A. P(x) it is enough to prove
VX e A. [Vy <x = P(y)] = P(x)
* If <'is <; then we obtain mathematical
induction as a special case

Structural Induction

* Recalle::=n|e/+e, | e e, | x
+ Define < < Aexp * Aexp such that
e, <e +e e,<e +e
e, <e "e e, <e e
- no other elements of Aexp * Aexp are related by <
To prove Ve € Aexp. P(e)
1. FVn e Z. P(n)
2. - Vx e L. P(x)
3. Ve, e, € Aexp. P(e;) A P(e,) = P(e, + &)
4. - Ve,, e, € Aexp. P(e;) A P(e;) = P(e; * &)

Notes on Structural Induction

+ Called structural induction because the
proof is guided by the structure of the
expression

+ One proof case per form of expression

- Atomic expressions (with no subexpressions)
are all base cases

- Composite expressions are the inductive case

« This is the most useful form of induction
in PL study

Example of Induction on

Structure of Expressions

+ Let
- L(e) be the # of literals and variable occurrences in e
- O(e) be the # of operators in e
+ Prove that Ve € Aexp. L(e) =O(e) + 1
+ Proof: by induction on the structure of e
- Casee=n.Le)=1andO(e) =0
- Casee=x.L(e)=1and O(e) =0
- Casee=¢e;+e,
* L(e)=L(e) +L(e;) and O(e) = O(ey) + O(ey) + 1
« By induction hypothesis L(e,) = O(e,) + 1 and L(e,) = O(e,) + 1
« Thus L(e) = O(e,;) + O(e;) +2=0(e) + 1
- Case e = e, * e,. Same as the case for +

Other Proofs by Structural
Induction on Expressions

+ Most proofs for Aexp sublanguage of IMP

+ Small-step and natural semantics obtain
equivalent results:
VecExp.VneN.es>"neeln

+ Structural induction on expressions works
here because all of the semantics are
syntax directed

Stating The Obvious
(With a Sense of Discovery)

« You are given a concrete state o.
« You have F<x+1,06>U5
«You also have <x + 1, o> | 88

e Is this possible?

Why That Is Not Possible

* Prove that IMP is deterministic

Ve c Aexp. Vo e 2. Vn,n'eN. <e,c>Un A <e,o>n" = n=n'
vb e Bexp. Vo e £. Vt, ' e B. <b, o> Ut A <b, o>t = t=t
vc e Comm. Vo,0,6" € £. <¢, 0> o' A <c,0>lo" = o =0"

+ No immediate way to use mathematical induction
+ For commands we cannot use induction on the

structure of the command

- while's evaluation does not depend only on the evaluation
of its strict subexpressions

<b,o>Utrue <, o>l <whilebdoc,o>Uc"

«whilebdo ¢, o> U "

Recall Opsem

» Operational semantics assigns meanings
to programs by listing rules of inference
that allow you to prove judgments by
making derivations.

A derivation is a tree-structured object
made up of valid instances of inference
rules.

Induction on the
Structure of Derivations

+ Key idea: The hypothesis does not just assume a c €
Comm but the existence of a derivation of <c, o> U &'
+ Derivation trees are also defined inductively, just like
expression trees
+ A derivation is built of subderivations:
x+lLo,pl6-i

X o,pU5-i 5-i<5 xizx+l, op U o, W, op U o,

x<5,0,p U true xi=x+1; W, o, U o4

<while x <5 do x:=x+1,c,2> U oy

+ Adapt the structural induction principle to work on the
structure of derivations

Induction on Derivations

To prove that for all derivations D of a
judgment, property P holds

1. For each derivation rule of the form
H, .. H,
C

2. ,1Assume that P holds for derivations of H; (i =
PERES] n)
3. Prove the the property holds for the derivation
obtained from the derivations of H; using the
given rule

T USED To HMATE WRITING | |1 REALIZED THAT THE

N ASSIGNMENTS , BUT NOW | | PURPOSE OF WRITING 1S

ew T eMysl THEM, /_,/ TO INFLATE WEAK. (DEAS.
. N ORSCURE POOR REKSOMING,

Notat-lon AY AND IMHIBIT CLARITY,

o Write D :: Judgment
to mean “D is the
derivation that
proves Judgment”

K}
;?v NN

WITH A LITTLE PRACTICE, | TME DMAMICS OF INTERBEING
WRITING CAN BE AW AND MOROLOGICAL IMPERATIVES
INTIMIDATING AND W DGk AND JANC - A STUDY
IMPEMETRABLE FOG! I PSTCHIC TRANSRELATIONAL
WAMT T SEE WY Book GENDER MODES.”

REFORT 7 ACADEMIR,
HERE 1

« Example:

D::<x+1,0> 2

Induction on Derivations (2)

+ Prove that evaluation of commands is deterministic:
<, o> lo=>Vs" e <c,o> "6 =06"
- Pick arbitrary ¢, 6, o' and D :: <c, o> U &'
- To prove: Vo" e 2. <¢, 6> 6" = ¢’ = &"
+ Proof: by induction on the structure of the
derivation D
+ Case: last rule used in D was the one for skip

<«skip, o> U o

- This means that c = skip, and ¢' = ¢

- By inversion <c, o> | ¢" uses the rule for skip
- Thusc" =0

- This is a base case in the induction

Induction on Derivations (3)

+ Case: the last rule used in D was the one for
sequencing

D;:i<c, >l Dyii<c,opla

D

<« ¢ oo ld

- Pick arbitrary " such that D" :: <c;; ¢;, o> U &".
- by inversion D" uses the rule for sequencing
- and has subderivations D", :: <c,, o> { ", and
D", :: <cy, "> U 6"
* By induction hypothesis on D, (with D*): o, = 6",
- Now D", :: <¢,, 5> U "
+ By induction hypothesis on D, (with D*,): &"
+ This is a simple inductive case

'
=0

Induction on Derivations (4)
+ Case: the last rule used in D was while true

b D;:i<b, o> Utrue D,:<c,> o, Dj:ii<whilebdoc,opld

whilebdoc,o Vo

- by inversion and determinism of boolean expressions, D"
also uses the rule for while true

- and has subderivations D", :: <c, o> U ¢"; and
D"y :: <W, ¢";> U 6"
+ By induction hypothesis on D, (with D*,): o, = &,
- Now D"; :: <whilebdo ¢, ;> U 6"
* By induction hypothesis on D5 (with D*;): ¢" = &'

- Pick arbitrary " such that D"::<while bdo ¢, o> | &"

What Do You,
The Viewers At Home, Think?
o Let’sdo if true together!
o Case: the last rule in D was if true

D;:i<b, o> U true D, :i¢cl, 0> U o

<if bdo clelse c2, 0> U o

» Try to do this on a piece of paper. In a
few minutes I’ll have some lucky winners
come on down.

Induction on Derivations (5)

e Case: the last ruleinDwas if true

D;:i<b, o> U true D, :i<cl, o> U o

<if bdo clelse c2,0> U o’

« Pick arbitrary ¢" such that
D" :: <if b do c1 else c2, o> U &"
- By inversion and determinism, D" also uses if true
- And has subderivations D", :: <b, o> { true and
D", :: <cl, 0> U 6"
* By induction hypothesis on D, (with D*,): ¢’ = &"

Induction on Derivations
Summary

+ If you must prove Vx e A. P(x) = Q(x)

- with A inductively defined and P(x) rule-defined
- we pick arbitrary x € A and D :: P(x)
- we could do induction on both facts

*xeA leads to induction on the structure of x
- D:P(x) leads to induction on the structure of D

- Generally, the induction on the structure of the
derivation is more powerful and a safer bet

+ Sometimes there are many choices for induction

- choosing the right one is a trial-and-error process
- a bit of practice can help a lot

Equivalence

+ Two expressions (commands) are equivalent if
they yield the same result from all states

e, ~ e, iff
Vo € X.Vn € N.
<e,, o> U niff <e,, o> Un
and for commands
Cy ~ G, iff
Vo, o € 2.
<¢y, > U 6" iff <c,, o> U &

Notes on Equivalence

+ Equivalence is like logical validity

- It must hold in all states (= all valuations)
- 2=1+1islike "2 =1 +1is valid"
- 2 ~ 1+ x might or might not hold.

- So, 2 is not equivalent to 1 + x

+ Equivalence (for IMP) is undecidable

- If it were decidable we could solve the halting problem
for IMP. How?

+ Equivalence justifies code transformations

- compiler optimizations
- code instrumentation
- abstract modeling

- Semantics is the basis for proving equivalence

Equivalence Examples

+ skip; c~cC
+ whilebdocx
if b then c; while b do c else skip
cIfe;xe,thenx:=e, =xx:=¢,
+ while true do skip ~ while true do x := x + 1
«Ifcis
while x =y do
ifx>ythenx:=x -yelsey:=y-x
then
(x:=221;y:=527;¢c) =~ (x :=17;y := 17)

Potential Equivalence

‘(X:i=e; Xi=€e)=Xi=6€
- Is this a valid equivalence?

WAIT A MINUTE! (N0, YOU'RE

Not An Equivalence

c(xi=e;Xi=e)) wXi=e
+ lie. Chigau yo. Dame desu!
- Not a valid equivalence for all ey, e,.
- Consider:
= (X :=X+1; X 1= X+2) o X 1= X+2
* But for n,, n, it's fine:
-(x:=ng;x:i=n)=x:i=n,

Proving An Equivalence

« Prove that "skip; ¢ ~ c" forall c
- Assume that D :: <skip; ¢, o> U &'
+ By inversion (twice) we have that

<«skip, >l Djii<c,o> o

<«skip; ¢, o> U &

« Thus, we have D, :: <¢c,6> | &'
« The other direction is similar

Proving An Inequivalence

« Prove that x :=y = x := zwheny = z

+ It suffices to exhibit a ¢ in which the two
commands yield different results

+ Let os(y) =0and o(z) = 1
* Then
<x =y, o> | o[x := 0]
<x:=2, 0> U o[x:=1]

Summary of Operational
Semantics

+ Precise specification of dynamic semantics

- order of evaluation (or that it doesn't matter)

- error conditions (sometimes implicitly, by rule
applicability; “no applicable rule” = “get stuck")

+ Simple and abstract (vs. implementations)

- no low-level details such as stack and memory
management, data layout, etc.

+ Often not compositional (see while)
+ Basis for many proofs about a language

- Especially when combined with type systems!

+ Basis for much reasoning about programs
+ Point of reference for other semantics

Homework

» Homework 1 Due Today
o Homework 2 Due Thursday
- No more homework overlaps.
» Read Winskel Chapter 5
- Pay careful attention.
» Read Winskel Chapter 8

- Summarize.

