
1

A Simple Imperative Language
Operational Semantics

(= “meaning”)

Some Survey Results

I can typeset documents in LaTeX.4. 4. 7.

I have written a compiler that had a type
checker.

2. 1. 12.

I have used an “automated” bug-finding
tool (e.g., FindBugs, PREfast, ESC/Java,
JLint, PMD, Fortify, LCLint, Coverity, etc.).

6. 0. 9.

I am comfortable with a functional
programming language (e.g., LISP, Scheme,
ML, or even Python).

6. 3. 6.

I have taken a course that covered
induction. I am comfortable proving things
using induction.

12. 2. 1.

Survey Results: Goals

• How PL relates to security (2)

• Type systems and theory (2)

• Get the basics of PL (2)

• New languages

• Symbolic execution

• Abstract interpretation

• Theorem proving

• Find a research topic

• Understand the CQual paper

• Help with Quals

• Advanced Topics

Homework #1 Out Today

• Due Tuesday, Jan 31 (1 week from now)

• Take a look tonight

• My office hours are on Wednesday

Today’s Plan

• Study a simple imperative language IMP

– Abstract syntax

– Operational semantics

– Denotational semantics

– Axiomatic semantics

– … and relationships between various
semantics (with proofs, peut-être)

– Today: operational semantics

• (Chapter 2 of Winskel)

Syntax of IMP

• Concrete syntax
– The rules by which programs can be expressed as strings of

characters

– Keywords, identifiers, statement separators (terminators),
comments, indentation, etc.

• Concrete syntax is important in practice
– For readability, familiarity, parsing speed, effectiveness of

error recovery, clarity of error messages

• Well understood principles
– Use finite automata and context-free grammars

– Automatic lexer/parser generators

2

(Note On Recent Research)

• If-as-and-when you find yourself making a
new language, consider GLR (elkhound)
instead of LALR(1) (bison)

• Scott McPeak, George G. Necula:
Elkhound: A Fast, Practical GLR Parser

Generator. CC 2004: pp. 73-88

• As fast as LALR(1), more natural, handles
basically all of C++, etc.

Abstract Syntax

• We ignore parsing issues and study
programs given as abstract syntax trees

• Abstract syntax tree is (a subset of) the
parse tree of the program

– Ignores issues like comment conventions

– More convenient for formal and algorithmic
manipulation

IMP Abstract Syntactic Entities

• int integer constants (n ∈ Z)

• bool boolean constants (true, false)

• L locations of variables (x, y)

• Aexp arithmetic expressions (e)

• Bexp boolean expressions (b)

• Com commands (c)

– (these also encode the types)

Abstract Syntax (Aexp)

• Arithmetic expressions (Aexp)
e ::= n for n ∈ Z

| x for x ∈ L

| e1 + e2 for e1, e2 ∈ Aexp

| e1 - e2 for e1, e2 ∈ Aexp

| e1 * e2 for e1, e2 ∈ Aexp

• Notes:

– Variables are not declared

– All variables have integer type

– No side-effects (in expressions)

Abstract Syntax (Bexp)

• Boolean expressions (Bexp)

b ::= true

| false

| e1 = e2 for e1, e2 ∈ Aexp

| e1 ≤ e2 for e1, e2 ∈ Aexp

| ¬¬¬¬ b for b ∈ Bexp

| b1 ∧∧∧∧ b2 for b1, b2 ∈ Bexp

| b1 ∨∨∨∨ b2 for b1, b2 ∈ Bexp

“Boolean”

• George Boole

– 1815-1864

• I’ll assume you
know boolean
algebra …

3

Abstract Syntax (Com)
• Commands (Com)

c ::= skip

| x := e x∈∈∈∈L ∧∧∧∧ e∈∈∈∈Aexp

| c1 ; c2 c1,c2∈∈∈∈Com

| if b then c1 else c2 c1,c2∈∈∈∈Com ∧∧∧∧ b∈∈∈∈Bexp

| while b do c c∈∈∈∈Com ∧∧∧∧ b∈∈∈∈Bexp

• Notes:
– The typing rules have been embedded in the syntax

definition

– Other parts are not context-free and need to be checked
separately (e.g., all variables are declared)

– Commands contain all the side-effects in the language

– Missing: pointers, function calls, what else?

Popular Culture

“Ah. You seek meaning.”

‘Yes.’

“Then listen to the music, not the song.”

-- Kosh and Talia, Deathwalker

“Angel... How did you get in here?”

‘I was invited. The sign in front of the
school... Formatia trans sicere

educatorum.’

“Enter all ye who seek knowledge.”

‘What can I say? I'm a knowledge seeker.’

-- Jenny Calendar and Angelus, Passion

Why Study Formal Semantics?

• Language design (denotational)

• Proofs of correctness (axiomatic)

• Language implementation (operational)

• Reasoning about programs

• Providing a clear behavioral specification

• “All the cool people are doing it.”
– You need this to understand PL research

• “First one’s free.”

Consider This Java

x = 0;
try {
x = 1;

break mygoto;
} finally {
x = 2;
raise
NullPointerException;

}
x = 3;
mygoto:
x = 4;

• What happens when
you execute this
code?

• Notably, what
assignments are
executed?

14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then

there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S.

• If execution of the try block completes abruptly because of a throw of a value V, then there
is a choice:
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then

the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

• If the catch block completes normally, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is

discarded).

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the
value V.

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

• If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S (and reason R is discarded).

Ouch!

• Wouldn’t it be nice if we had some way
of describing what a language (feature or
program) means …

– More precisely than English

– More compactly than English

– So that you might build a compiler

– So that you might prove things about
programs

4

Analysis of IMP

• Questions to answer:

– What is the “meaning” of a given IMP

expression/command?

– How would we go about evaluating IMP

expressions and commands?

– How are the evaluator and the meaning related?

Three Canonical Approaches

• Operational

– How would I execute
this?

– “Symbolic Execution”

• Axiomatic

– What is true after I
execute this?

• Denotational

– What is this trying to
compute?

An Operational Semantics

• Specifies how expressions and commands should be
evaluated

• Operational semantics abstracts the execution of a
concrete interpreter

• Depending on the form of the expression
– 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.

– e1 + e2 is evaluated by first evaluating e1 to n1 , then
evaluating e2 to n2 . (post-order traversal)
• The result of the evaluation is the literal representing n1 + n2.

– Similarly for e1 * e2

Semantics of IMP

• The meaning of IMP expressions depends on
the values of variables

– What does “x+5” mean? It depends on “x”!

• The value of variables at a given moment is
abstracted as a function from L to ZZZZ (a state)

– If x a 8 in our state, we expect “x+5” to mean 13

• The set of all states is Σ = L → ZZZZ

• We shall use σ to range over Σ

– σ, a state, maps variables to values

Notation: Judgment

• We write:

<e, σ> ⇓ n

• To mean that e evaluates to n in state σ.

• This is a judgment. It asserts a relation
between e, σ and n.

• In this case we can view ⇓ as a function
with two arguments (e and σ).

Operational Semantics

• This formulation is called natural
operational semantics

– or big-step operational semantics

– the judgment relates the expression and
its “meaning”

• How should we define

<e1 + e2, σ> ⇓ … ?

5

Notation: Rules of Inference

• We express the evaluation rules as rules
of inference for our judgment

– called the derivation rules for the judgment

– also called the evaluation rules (for
operational semantics)

• In general, we have one rule for each
language construct:

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

Rules of Inference

Conclusion

Hypothesis1 … HypothesisN

Γ � if b then e1 else e2 : τ

Γ � b : bool Γ � e1 : τ Γ � e2 : τ

• For any given proof system, a finite
number of rules of inference (or schema)
are listed somewhere

• Rule instances should be easily checked

• What is the definition of “NP”?

Derivation

• Tree-structured (conclusion at bottom)

• May include multiple sorts of rules-of-
inference

• Could be constructed, typically are not

• Typically verified in polynomial time

Evaluation Rules (for Aexp)

<n, σ> ⇓ n <x, σ> ⇓ σ(x)

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2
<e1 - e2, σ> ⇓ n1 - n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 * e2, σ> ⇓ n1 * n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

• This is called structural operational semantics

– rules defined based on the structure of the expression

• These rules do not impose an order of evaluation!

(show: possible ∨ rule)

Evaluation Rules (for Bexp)

<true, σ> ⇓ true

<false, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ true

<b1, σ> ⇓ true <b2, σ> ⇓ true

<b1 ∧ b2, σ> ⇓ false

<b1, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ false

<b2, σ> ⇓ false

<e1 = e2, σ> ⇓ n1 = n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 ≤ e2, σ> ⇓ n1 ≤≤≤≤ n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

How to Read the Rules?

• Forward (top-down) = inference rules

– if we know that the hypothesis
judgments hold then we can infer that
the conclusion judgment also holds

– If we know that <e1, σ> ⇓ 5 and
<e2 , σ> ⇓ 7, then we can infer that
<e1 + e2 , σ> ⇓ 12

6

How to Read the Rules?

• Backward (bottom-up) = evaluation rules

– Suppose we want to evaluate e1 + e2, i.e.,
find n s.t. e1 + e2 ⇓ n is derivable using the
previous rules

– By inspection of the rules we notice that the
last step in the derivation of e1 + e2 ⇓ n must
be the addition rule

• the other rules have conclusions that would not
match e1 + e2 ⇓ n

• this is called reasoning by inversion on the
derivation rules

Evaluation By Inversion

• Thus we must find n1 and n2 such that
e1 ⇓ n1 and e2 ⇓ n2 are derivable

– This is done recursively

• If there is exactly one rule for each kind of
expression we say that the rules are syntax-
directed

– At each step at most one rule applies

– This allows a simple evaluation procedure as
above

– True for our Aexp but not Bexp. Why?

Evaluation of Commands

• The evaluation of a Com may have side
effects but has no direct result

– What is the result of evaluating a command ?

• The “result” of a Com is a new state:

<c, σ> ⇓ σ’

– But the evaluation of Com might not
terminate! Danger Will Robinson!

Com Evaluation Rules 1

<skip, σ> ⇓ σ <c1 ; c2, σ> ⇓ σ’’

<c1, σ> ⇓ σ’ <c2, σ’> ⇓ σ’’

<if b then c1 else c2, σ> ⇓ σ’

<b, σ> ⇓ true <c1, σ> ⇓ σ’

<if b then c1 else c2, σ> ⇓ σ’

<b, σ> ⇓ false <c2, σ> ⇓ σ’

Com Evaluation Rules 2

Def: σ[x:= n](x) = n
σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

• Let’s do while together

Com Evaluation Rules 3

<while b do c, σ> ⇓ σ

<b, σ> ⇓ false

Def: σ[x:= n](x) = n
σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

<while b do c, σ > ⇓ σ’

<b, σ> ⇓ true <c; while b do c, σ> ⇓ σ’

7

Homework

• Homework 1 Out Today
– Actually out last Friday …

– Due Tuesday, January 31

• Read at least 1 of these 3 Articles
– 1. Wegner's Programming Languages - The First 25
years

– 2. Wirth's On the Design of Programming Languages

– 3. Nauer's Report on the algorithmic language
ALGOL 60

• Skim the optional reading – we’ll discuss opsem
“in the wild” next time

