
CS655 Lecture 7 Axiomatic Semantics 2: With A Vengeance 9 February, 2006
Scribe: Daniel Dunbar Lecturer: Wes Weimer

1 Introduction

In the last lecture axiomatic semantics were introduced for use in proving properties of programs. The Hoare
rules were given so that derivations could be on the basis of judgments and not only on the denotational or
operation semantics. In order to ensure that these rules correspond with the notion of truth it is necessary
to show that the Hoare rules are sound, i.e. that it is not possible to prove an assertion that is false. It is
also desirable that this implication can also be reversed, that is that any true assertion can be proved using
the Hoare rules.

2 Soundness

A formal system is sound by definition if ` {A}c{B} implies that ∀σ∈Σ |= {A}c{B}. By expanding the
notion of an assertion judgment then this holds if, for all states σ ∈ Σ,

σ |= A Op :: 〈c, σ〉 ⇓ σ′ Pr :: ` {A}c{B}
σ′ |= B

where Op is a derivation in operational semantics and Pr is an axiomatic semantics proof.
In order prove this it is not sufficient to use one of the previous techniques for induction. Inducting on

the structure of c or Op will encounter problems with the while rule. Similarly, inducting on the structure
of Pr will encounter problems with the rule of consequence. However, by inducting on the structure of both
Op and Pr simultaneously the proof can be carried out.

This induction will be established using well-founded induction over the lexicographic ordering of (Op,Pr)
where both of Op and Pr are ordered by substructure. That is, for Op < Op′ (Pr < Pr′) iff Op (Pr) is a
substructure of Op′ (Pr′). The well-founded order is defined by (Op,Pr) ≺ (Op′,Pr′) iff Op < Op′ or Op = Op′

and Pr < Pr′.
Using this induction method the proof is mostly straightforward except for the while rule. If the last rule

in Pr was a while rule then Pr is
Pr1 :: ` {A ∧ b}c{A}

` {A} while b do c{A ∧ ¬b}

and there are two possible rules for the last rule in Op by inversion and assume σ |= A. In the false case
then Op has the form

Op1 :: 〈b, σ〉 ⇓ false

〈while b do c〉 ⇓ σ

and by the soundness of booleans and Op1 then σ |= A ∧ ¬b and so |= {A}while b do c{A ∧ ¬b}. In the true
case Op is of the form

Op1 :: 〈b, σ〉 ⇓ true Op2 :: 〈c, σ〉 ⇓ σ′ Op3 :: 〈while b do c, σ′〉 ⇓ σ′′

〈while b do c, σ〉 ⇓ σ′′

and as before by the soundness of booleans σ |= A∧b. By the induction hypothesis on Pr1 and Op2 this implies
that σ′ |= A. Since Op3 < Op then (Op3,Pr) ≺ (Op,Pr) and so by the induction hypothesis σ′′ |= A ∧ ¬b
and therefore |= {A} while b do c{A ∧ ¬b}.

3 Completeness

Axiomatic semantics is said to be complete if |= {A}c{B} implies that there exists a proof Pr ` {A}c{B}.
Completeness ensures that the Hoare rules are sufficient to verify all valid properties of a program. Because

1

there is a logic embedded in the choice of an assertion language, axiomatic semantics could only be complete
if the chosen logic was also complete. This is unsatisfactory since we would like to use first-order logic, and
first-order logic is known to be incomplete.

This problem is solved by considering the relative completeness of axiomatic semantics. We will say
that axiomatic semantics are relatively complete if they would be complete under the assumption that the
underlying logic is also complete. Under this definition the Hoare rules are relatively complete.

For example, consider the assertion judgment |= {x < 5 ∧ z = 2}y := x + 2{y < 7}. Since ` {x + 2 <
6}y := x + 2{y < 7} and ` x < 5 ∧ z = 2 ⇒ x + 2 < 7 and clearly ` {y < 7} ⇒ {y < 7} so by the rule
of consequence ` {x < 5 ∧ z = 2}y := x + 2{y < 7}. The difficulty here is in determining the appropriate
assertion which can be derived while supporting the conclusion.

Dijkstra’s insight into this problem was that in order to verify that {A}c{B} first consider all predicates
A′ such that |= {A′}c{B}. This set is denoted Pre(c,B) and contains all the preconditions of B for command
c. Additionally, it is necessary to verify that for some A′ ∈ Pre(c,B) then A ⇒ A′. Any condition in this
set would suffice to prove that verify the assertion, but most of these conditions will be overly strong (e.g.
false!) and not provable. However, the conditions in this set can be ordered by implication and so the proof
strategy is to compute the weakest precondition wp(c,B) in this set and prove that A ⇒ wp(c,B).

The conditions for wp(c,B) can be expressed by ` {wp(c,B)}c{B} (wp is a precondition according to
the Hoare rules) and |= {A}c{B} implies that |= A ⇒ wp(c,B). If these properties hold and A is complete
(|= A implies ` A) then

` A ⇒ wp(c,B) ` {wp(c,B)}c{B}
` {A}c{B} .

The weakest precondition is defined inductively on c following the Hoare rules.

• wp(c1; c2, B) = wp(c1,wp(c2, B))

• wp(x := e,B) = [e/x]B

• wp(if e then c1 else c2, B) = (e ⇒ wp(c1, B) ∧ ¬e ⇒ wp(c2, B))

To derive the weakest precondition for loops we start with the unwinding equivalence

while b do c = if b then c; while b do c else skip.

Letting w = while b do c and W = wp(w,B) then

W = b ⇒ wp(c,W) ∧ ¬b ⇒ B.

This is a recursive equation that can be solved using domain theory if a complete partial order over assertions
can be defined.

Define an ordering A v A′ iff |= A′ ⇒ A. This defines a partial order, and for any chain

A1 v A2 v . . .

then the infinite conjunction ∧Ai is a least upper bound for the chain. Define

F (A) = b ⇒ wp(c, A) ∧ ¬b ⇒ B;

this function is both monotonic and continuous, and the least-fixed point is

wp(w,B) = ∧F i(true).

Alternatively, we can define a family of weakest preconditions wpk(while e do c,B) as the weakest pre-
condition for which the loop terminates with assertion B holding if it terminates in k or fewer iterations.
With this definition

wp0 = ¬b ⇒ B,

wpi+1 = e ⇒ wp(c,wpi) ∧ ¬e ⇒ B,

and
wp(while e do c,B) = ∧wpk = lub{wpk : k ≥ 0}.

2

4 Verification Conditions

Although the mathematical theory is sound and suffices to show completeness (see Necula reference), in
general weakest preconditions are impossible to compute. However, the actual weakest precondition was not
necessary in order to verify the condition. Define a verification condition VC(c,B) as any precondition of B
for command c for which it is possible to verify that given {A}c{B} then A ⇒ VC(c,B) → wp(c,B).

This is not inherently simpler, but it turns out that the hard part of determining the verification conditions
in practice is discovering the loop invariants. By introducing a new form of while that includes a loop
invariant, and requiring the programmer to specify this invariant, then the process of computing verification
conditions can be automated. A process for computing VC(c,B) is called VCGen.

The new while command will have the form

whileinv e do c

where the invariant inv should hold every time before e is evaluated.

4.1 Verification Condition Generation

The generation of VC(c,B) is defined in a manner much like that for wp:

• VC(skip, B) = B

• VC(c1; c2, B) = VC(c1,VC(c2, B))

• VC(if b then c1 else c2, B) = (b ⇒ VC(c1, B) ∧ ¬b ⇒ VC(c2, B)

• VC(x := e,B) = [e/x]B

• VC(whileinv e do c,B) = inv ∧ ∀x0,...,xn inv → (e → VC(c, inv) ∧ ¬e ⇒ B)))

For the while rule x1, . . . , xn represent all the variables that are modified in c. The condition can be
interpreted as:

• inv holds on entry,

• for any arbitrary iteration,

inv is preserved by the command, and

B holds if the loop terminates.

4.2 Example

Suppose we wish to compute the verification condition of the following program P with the post-condition
x 6= 0:

x = 0;
y = 2;
whilex+y=2 y > 0 do

y := y − 1;
x := x + 1

By the sequencing rule VC(P, x 6= 0) first computes the verification condition of the while loop; if this loop
command is w then

VC(w, x 6= 0) = x + y = 2 ∧ ∀x,yx + y = 2 ⇒ (y〉0 ⇒ VC(c, x + y = 2) ∧ y ≤ 0 ⇒ x 6= 0)

and
VC(y := y − 1;x := x + 1, x + y = 2) = (x + 1) + (y − 1) = 2

3

so
VC(w, x 6= 0) = x + y = 2 ∧ ∀x,yx + y = 2 ⇒ (y〉0 ⇒ (x + 1) + (y − 1) = 2 ∧ y ≤ 0 ⇒ x 6= 0)

and finally,

VC(x := 0; y := 2; w, x 6= 0) = 0 + 2 = 2 ∧ ∀x,yx + y = 2 ⇒ (y〉0 ⇒ (x + 1) + (y − 1) = 2 ∧ y ≤ 0 ⇒ x 6= 0).

The resulting verification condition is a predicate involcing quantified variables and arithmetic; it can be
verified by an automated theorem prover such as Simplify.

Note that simply providing an invalid loop invariant, either one that is too strong (like false), or too weak
(like true) will not introduce an error in this process; the resulting condition will simply be unsatisfiable.
VCGen can in fact be shown to be sound by induction on the structure of c, and soundness holds for any
choice of loop invariants.

4.3 Forward VCGen

The verification condition is traditionally computed backwards, which works well for structured code, but
it can also be computer forwards. This technique works even for unstructured languages (e.g. assembly
language) by using symbolic execution. The PREfix tool in use at Microsoft uses this technique.

5 Summary

The axiomatic semantics have been shown to be sound and (relatively) complete. The proof of soundness
required a new technique of simultaneous induction. The proof of completeness required developing the
concept of a weakest precondition. By shifting the burden of the work of determining invariants over to the
program we were able to compute verification conditions that were sound and could be computed in practice.

4

