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1 Introduction

Learning denotational semantics(DS) is a tricky practice. Originally developed by Christopher Strachey
and Dana Scott, denotational semantics is also known as Scott-Strachey semantics. Due to its mathematical
approach, DS is sometimes called fixed-point semantics, or mathematical semantics.

In constrast to DS, operational semantics is commonly used in modern research, perhaps because as
an abstract interpreter it is simpler to understand. Operational semantics is not compositional (e.g., the
evaluation rule for while b do c does not depend solely on b and c).

Students sometimes have difficulty understanding denotational semantics and seeing where they should
use it. In this class the most important things to know about DS are:

1. DS is compositional. (The most important part of today’s lecture.)

2. DS was used frequently in the past. It is less common in modern research.

3. In DS, the meaning of something is a mathematical object.

4. ⊥ (called bottom) is used to represent non-termination.

5. Fixed points and domains are used to handle while.

DS can be quite complicated. Compositionality is the most commonly-mentioned property of DS.
DS is very useful if you are studying a complex computational model. SPARK Ada was formally specified

with DS. In DS, everthing can be reduced to mathematical objects, so it is handy when compare two programs
in different languages.

2 Getting Started

We assign meanings to programs in DS. The distinguishable properties are:

• The meaning is a mathematical object.

• The meaning is defined compositionally, that is, the denotation of a command is only based on the
meaning of its immediate sub-commands.

We use a new notation [[]] (called double/semantic/square brackets) to obtain the meaning. Sometimes
we put a letter A, B, or C before [[]] to indicate that the denotation is for Aexp, Bexp or Com.

We begin by defining denotations for Aexps and Bexps inductively. Denotational meaning functions are
high order functions. For example, A[[x + 1]] yields a function that, given a state σ, looks up x in σ, adds
one to it and returns the number. Denotations for expressions are total functions because they are defined
for every expression and every state. A formal denotational definition can be found in the book.

3 Denotational Semantics for Commands

DS becomes more complicated when we try to denote commands and handle non-termination.
When a command c does not terminate, or diverges, we map it to a special element ⊥. We can extend a

function f ∈ X → X⊥ to X⊥ → X⊥ so that f(⊥) =⊥. This is called strictness. Intuitively strictness means
that if one step of a command does not terminate, then the whole command diverges.
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We start to specify DS for commands:

C[[skip]]σ = σ

C[[x := e]]σ = σ[x := A[[e]]]
C[[c1; c2]]σ = C[[c2]](C[[c1]]σ)

C[[if b then c1 else c2]]σ = if B[[b]]σ then C[[c1]]σ else C[[c2]]σ

The semantics does not care about intermediate states, so it can be handy for checking the equivalence
of two commands.

Let W be C[[while b do c]]. A first attempt to model while is called the unwinding equation:

W (σ) = if B[[b]]σ then W (C[[c]]σ) else σ

However this denotation is not compositional, contradicting our requirement for DS. A consequence of
this recursive definition is that the equation does not specify W uniquely. For example, the equation for
C[[while true do skip]] reduces to W (σ) = W (σ), so every function qualifies as the denotation of the command
while true do skip. Our intuition suggests that W (σ) =⊥ should be the answer, but we must develop more
machinery before we can arrive at that conclusion.

Examining the unwinding equation, we can abstract it to W (σ) = F (W (σ)). W is then a fixed point of
an equation.

The second attempt to model while tries to solve the equation in an operational fashion. Imagine that
the resources of our machine are limited so that we can only evaluate W for k iterations. If W yields a result
within k iterations, we assign this result to Wk, otherwise we claim Wk diverges. Then we say W (σ) = Wk(σ)
if there exists a k such that Wk(σ) 6=⊥ and W (σ) =⊥ otherwise. This solution has merit, but it is still not
good enough because it is operational in nature.

The last attempt to model while involves domain theory, an ordering on possible soltuions, and least fixed
points. We restricted the language to only have one variable x in order to simplify our presentation. Recall
that the unwinding equation had multiple solutions, but only want a single solution: we want a solution that
removes all arbitrariness and replaces it with divergence. We introduce an ordering of semantic functions,
and choose the least fixed point of the equation as the denotation. A smaller function in this ordering has
less information.

We note that whether a least fixed point (LFP) of W = FW exists depends on the properties of F .
Fortunately, for everything we do in realistic programming languages, a LFP exists. We did not cover the
details of the fixed-point theorem; it suffices to know the conclusion. The key concepts included: domains,
monotonic functions, continuous function, and fixed points.

Although the form of the LFP solution is elegant, it is not always easy to take the infinite limit to F k

and find a closed-form solution. This usually requires some human intelligence.

4 Summary

The high-level goals about DS are more important than memorizing the details of the proofs.

1. DS is compositional.

2. DS was used commonly in the past but is less common in modern research.

3. In DS, the meaning of a program is a mathematical object.

4. ⊥ is used to mean non-termination.

5. Fixed points and domains are used to handle while.
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