
CS655 — Homework Assignment 2
(solutions due Thu February 2)

Wes Weimer

January 26, 2006

Exercise 1: Mathematical Induction. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly
which sentences are wrong in the proof. Bringing me a counterexample does
not constitute an acceptable solution.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the
flower f ∈ F . (The range of smells is not so important, but we’ll assume that
it admits equality.) We’ll also assume that F is countable. Let the property
P (n) mean that all subsets of F of size at most n contain flowers that smell
the same.

P (n)
def
= ∀X ∈ P(F). |X|≤n ⇒ (∀f, f ′ ∈ X. smells(f) = smells(f ′))

(the notation |X| denotes the number of elements of X)
One way to formulate the statement to prove is ∀n ≥ 1.P (n). We’ll prove

this by induction on n, as follows:
Base: n = 1. Obviously all singleton sets of flowers contain flowers that

smell the same (by the definition of P (n)).
Induction step:. Let n be arbitrary and assume that all subsets of F of

size at most n contain flowers that smell the same. We will prove that the
same thing holds for all subsets of size at most n+1. Pick an arbitrary set X
such that |X| = n+1. Pick two distinct flowers f, f ′ ∈ X and let’s show that
smells(f) = smells(f ′). Let Y = X − { f } and Y ′ = X − { f ′ }. Obviously
Y and Y ′ are sets of size at most n so the induction hypothesis holds for
both of them. Pick any arbitrary x ∈ Y ∩ Y ′. Obviously, x 6= f and x 6= f ′.
We have that smells(f ′) = smells(x) (from the induction hypothesis on Y)
and smells(f) = smells(x) (from the induction hypothesis on Y ′). Hence
smells(f) = smells(f ′), which proves the inductive step, and the theorem.

(One indication that the proof might be wrong is the large number of
occurrences of the word “obviously” :-))

1

Exercise 2: Induction. Prove by induction the following statement about
the operational semantics:

For any BExp b and any initial state σ such that σ(x) is even, if 〈while b do x :=
x + 2, σ〉 ⇓ σ′ then σ′(x) is even. Make sure you state what you induct on,
what the base case is and what the inductive cases are. Show representative
cases among the latter. Do not do a proof by mathematical induction!

Exercise 3: Language Features. We extend IMP with a notion of
integer-valued exceptions (or run-time errors), as in Java, ML or C#. We
introduce a new type T to represent command terminations, which can either
be normal or exceptional (with an exception value n ∈ Z):

T ::= σ “normal termination”
| σ exc n “exceptional termination”

We use t to range over possible terminations T . We then redefine our oper-
ational semantics judgment:

〈c, σ〉 ⇓ T

The interpretation of
〈c, σ〉 ⇓ σ′ exc n

is that command c terminated abruptly by throwing an exception with value
n ∈ Z at a point in c’s execution when the state was σ′. We only model
one type of exception, but every exception has an integer “argument” n (or
“payload” or “value”) that is set when the exception is thrown and available
when the exception is caught.

Note that our previous command rules must be updated to account for
exceptions, as in:

〈c1, σ〉 ⇓ σ′ exc n

〈c1; c2, σ〉 ⇓ σ′ exc n
seq1

〈c1, σ〉 ⇓ σ′ 〈c2, σ
′〉 ⇓ t

〈c1; c2, σ〉 ⇓ t
seq2

We also introduce three additional commands:

throw e
try c1 catch x c2

after c1 finally c2

• The throw e command raises an exception with argument e.

• The try command executes c1. If c1 terminates normally (i.e., without
an uncaught exception), the try command also terminates normally. If
c1 raises an exception with value e, the variable x ∈ L is assigned the
value e and then c2 is executed.

2

• The finally command executes c1. If c1 terminates normally, the finally
command terminates by executing c2. If instead c1 raises an exception
with value e1, then c2 is executed:

– If c2 terminates normally, the finally command terminates by throw-
ing an exception with value e1. (That is, the original exception e1

is re-thrown at the end of the finally block, as in Java.)

– If c2 throws an exception with value e2, the finally command ter-
minates by throwing an exception with value e2. (That is, the new
exception e2 overrides the original exception e1, also as in Java.)

These constructs are intended to have the standard exception semantics from
languages like Java, C# or OCaml. We thus expect:

x := 0 ;

{ try

if x <= 5 then throw 33 else throw 55

catch x

print x } ;

while true do {

x := x - 15 ;

print x ;

if x <= 0 then throw (x*2) else skip

}

to output “33 18 3 -12” and then terminate with an uncaught exception
with value -24.

• Give the large-step operational semantics inference rules (using our new
judgment) for the three new commands presented here. You should
present six (6) new rules total.

• Argue for or against the claim that it would be more natural to describe
“IMP with exceptions” using small-step contextual semantics. You
may use “simpler” or “more elegant” instead of “more natural” if you
prefer. Do not exceed two paragraphs (one should be sufficient). Both
your ideas and also the clarity with which they are expressed (i.e., your
English prose) matter.

• Download the Homework 2 code pack from the course web page. Mod-
ify hw2.ml so that it implements a complete interpreter for “IMP with
exceptions (and print)”. You may build on your code from Home-
work 1 (although the let command is not part of this assignment).
Using OCaml’s exception mechanism to implement IMP exceptions is

3

actually slightly harder than doing it “naturally”, so I recommend that
you just implement the opsem rules. The Makefile includes a “make
test” target that you should use (at least) to test your work.

• Modify the file example-imp-command so that it contains a “tricky”
IMP command (presumably involving exceptions) that can be parsed
by our IMP test harness (e.g., “imp < example-imp-command” should
not yield a parse error).

• Rename hw2.ml to your last name-hw2.ml and rename example-imp-command
to your last name-imp-command and email them to me. Do not mod-
ify any other files. Your submission’s grade will be based on how
many of the submitted example-imp-commands it interprets correctly
(in a manner just like the “make test” trials). If your submitted
example-imp-command breaks the greatest number of interpreters (and
more than 0!), you will receive extra credit. If there is a tie all tiers
will receive the extra credit.

4

