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1. lntroductwn 

Consider  the p rob lem of  verifying that one  equal i ty  is a consequence  o f  several  o ther  
equalities, for  example,  t h a t f ( f ( a ,  b), b) = a is a consequence  o f f ( a ,  b) = a, or, less 

obviously,  t h a t f ( a )  = a is a consequence  of  f ( f ( f ( a ) ) )  ~ a and f ( f ( f ( f ( f ( a ) ) ) ) )  = a. A 
practical  a lgor i thm for this p rob lem is essential  to mechanica l  p rogram verif icat ion (or to 
any other  kind o f  mechanica l  reasoning),  since almost  all  proofs  require  reasoning about  
equalities. 

In  1954 A c k e r m a n n  [1] showed that  the p rob lem was decidable  but  d id  not  give a 
practical  algori thm. The  p rob lem appears  to have  been ignored for the next  twenty-four  
years. In  1976 and 1977 several people  at tacked the p rob lem f rom qui te  different  points  o f  
view. Downey,  Sethi, and Tar jan  [3] viewed the p rob lem as a var ia t ion  o f  the c o m m o n  
subexpression problem,  Kozen  [4] as the word  p rob lem in f imtely presented algebras, and 
Shostak [81 and Nelson  and Oppen  [51 as the decision p rob lem for the quantif ier-free 
theory o f  equal i ty  with uninterpreted funct ion symbols. 

All  these problems reduce to the p rob lem o f  construct ing the "congruence  closure"  o f  a 
relat ion on a graph. In  Sect ion 2 we define th,s no t ion  and describe a congruence  closure 
a lgor i thm which we implemented  in 1976 for use in the theorem prover  o f  the Stanford 
Pascal Verifier.  Its worst-case t ime is O(m 2) for graphs with m edges. Downey,  Seth1, and 
Tar jan  [3] describe an a lgor i thm with  worst-case t ime O(m logZm), which, by using a hash 
table, can be made  to run  in average-case t ime O(m log m). We  implemented  this a lgor i thm 
but  d id  not  f ind it faster than  the s impler  a lgor i thm in our  application.  
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In Section 3 we prove that the congruence closure algorithm provides a decision 
procedure for the quantifier-free theory of  equahty with uninterpreted function symbols. 
Other proofs have been given by Shostak [8] and Kozen [4], but ours is simpler. 

In Section 4 we give a decision procedure based on congruence closure for another 
theory of  interest in program manipulation: the quantifier-free theory of  LISP list structure 
with uninterpreted function symbols. The axioms of  this theory are 

CAR(CONS(x, y)) = x, 
CDR(CONS(x, y)) = y, 
-TATOM(x) 3 CONS(CAR(x), CDR(x)) = x, 
~ATOM(CONS(x,  y)). 

(Terms may contain uninterpreted function symbols, as well as the function symbols CAR, 
CDR, and CONS.) Using the fastest version of  the congruence closure algorithm, the 
decision procedure requires average time O(n log n) to determine the satisfiability of  a 
conjunction of  length n. 

We conclude Section 4 with a curiosity: If  the axlomatlzation of  the theory of  hst 
structure is altered by specifying the result of  CAR and CDR on atoms, the problem of  
determining the satlsfiability of  a conjunction becomes NP-complete. 

The two deosion procedures given in Sectmns 3 and 4 have been implemented m the 
simplifier for the Stanford Pascal Verifier. Details of  how these and other deosion 
procedures are combined to form a simplifier are given m [6]. 

2. Computing the Congruence Closure 

Let G = ( V, E) be a directed graph with labeled vertices, possibly with multiple edges. For 
a vertex v, let ?,(v) denote its label and 8(v) its outdegree, that is, the number of  edges 
leaving v. The edges leaving a vertex are ordered. For 1 ~_ t _< 8(v), let v[i] denote the ith 
successor of v, that is, the vertex to which the ith edge of  v points. A vertex u is apredecessor 
of v if v = u[i] for some i. Since multiple edges are allowed, possibly v[t] = vii i  for i ~ l- 
Let n be the number of  vertices of  G and m the number of  edges of  G. We assume there are 
no isolated vertices and therefore that n = O(m). 

Let R be a relation on V. Two vertices u and v are congruent under R if ~(u) = ~(v), 8(u) 
= 8(v), and, for all i such that 1 _< 1 _< 8(u), (u[t], v[i]) E R. R is closed under congruences 
if, for all vertices u and v such that u and v are congruent under R, (u, v) E R. There is a 
unique minimal extension R '  of  R such that R'  is an equivalence relation and R '  is closed 
under congruences; R '  is the congruence closure of R. 

For example, let G be the graph shown in Figure 1 and R the relation ((V2, V3)}. The 
vertices V 1 and V2 are congruent under R, so the congruence closure of  R must include 
the pairs (V2, V3) and (VI, V2). In fact, the minimal equivalence relation containing 
these pairs, namely the equivalence relation with associated partition {(VI, V2, V3}, 
{V4}), is closed under congruences and is therefore the congruence closure of  R. 
Notice that the vertices V1, V2, V3, and V4 of  G represent in a natural way the terms 
f ( f ( a ,  b), b),f(a, b), a, and b, respectively. Deducing that V1 must be equivalent to V3 in 
the congruence closure is analogous to deducingf ( f (a ,  b), b) = a f romf(a ,  b) = a by the 
substitutivity of  equality. 

As a second example, let G be the graph shown in Figure 2, R the relation {(VI, V6), 
(V3, V6)}, and R '  the congruence closure of  R. Vertices V2 and V5 are congruent under 
R, so (V2, V5) E R'. Since R '  is closed under congruences, (VI, V4) ~ R'. The pairs 
(VI, V4) and (VI, V6) are both m R',  so (V4, V6) E R'. Hence (V3, V5) E R'. Thus all six 
vertices are equivalent in the congruence closure. Essentmlly, we have proved the fact that 

f ( f ( f ( a ) ) )  = a and f ( f ( f ( f ( f ( a ) ) ) ) )  = a together implyf(a)  = a. 
We now consider the problem of computing the congruence closure. We represent an 

eqmvalence relation by its corresponding partition, that is, by the set of  its eqmvalence 
classes. We use two procedures for operating on the partmon: U N I O N  and FIND. 



358 

(~)v2 

/ \  
®v3 ®v, 

G. NELSON AND D. C. OPPEN 

(~)vl 

(~)v2 

(~) v3 

(~) v4 

(~) v5 

® ve 

FIGURE 2 

U N I O N ( u ,  v) combines  the equivalence  classes o f  vertices u and v. F I N D ( u )  returns the 
un ique  n a m e  of  the equivalence  class o f  vertex u. 

Suppose that R is a relat ion on  the vertices o f  a graph  G, that  R is d o s e d  under  
congruences,  and that u and v are vertices o f  G. The  fol lowing procedure  M E R G E ( u ,  v) 
constructs the congruence closure o f  the relat ion R t.J {(u, v)). 

MERGE(u, v) 

I If FIND(u) = FIND(v), then return 

2 Let P, be the set of all predecessors of all verttces equivalent to u, and Po the set of all predecessors of all 
vertices eqmvalent to v. 

3 Call UNION(u, v) 

4 For each pair (x, y) such that x ~ P, and y ~ Po, If FIND(x) ~ FIND(y) but CONGRUENT(x, y) = TRUE, 
then MERGE(x, y). 

CONGRUENT(u, v). 
1 If 8(u) ~ d(v), then return FALSE 

2 For 1 _< l _< ~(u), if FIND(u[0) ~ FIND(v[t]), then return FALSE 

3. Return TRUE 

Since the a lgor i thm calls U N I O N  only on the initial pair  o f  vertices and on congruent  
pairs, the final equivalence  relat ion Is not  too coarse. Suppose that it is too fine. T h e n  there 
are two vertices x and y which are congruent  but not  equivalent .  Since R was closed under  
congruences initially, there was some call U N I O N ( a ,  b) such that  x and y were not  
congruent  before the call  but  were congruent  after tt. Obviously  some successor o f  x was 
equivalent  to ei ther a or  b before this call to U N I O N ,  and the same holds for y. 
Fur thermore ,  this call U N I O N ( a ,  b) was made  f rom step 3 o f  some call  M E R G E ( a ,  b), so 
step 4 o f  that call to M E R G E  must  merge x and y, contrary to assumption.  Thus  the 
a lgor i thm is correct. 

CLAIM 1. The number of calls to C O N G R U E N T  is bounded by O(mn),for any sequence 
of calls to M E R G E .  
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PROOF. Two vertices u and v are checked for congruence only when two of  their 
successors are merged; this can happen at most 8(u) + 6(v) - 1 times. Thus the number of  
calls to C O N G R U E N T  is bounded by 

Y, (8(u) + d(v) -- 1) = Z 8(u) + Z 8(v) -- E 1 
u , v  u , v  u , v  u , o  

= 2mn - n(n - 1)/2 
= O(mn).  [ ]  

CLAIM 2. The number of calls to FIND from C O N G R U E N T  is bounded by O(m2), for 
any sequence of calls to MERGE. 

PROOF. Let nk be the number o f  vertices with outdegree k. Each pair of  vertices with 
outdegree k can be checked for congruence at most 2k - 1 times; each check requires at 
most 2k calls to FIND. Thus the total number of  calls to F I N D  is bounded by 

~ 4k2n~ _< 2knk = 4m 2. [] 

We associate with each equivalence class a "predecessor list" of  all vertices with 
successors in the class. No vertex appears more than once m the predecessor list. When 
UNION combines two equivalence classes, it merges their predecessor lists into one, 
eliminating any duplicates, and associates the new predecessor list with the new equivalence 
class. With each vertex is associated a unique number from 1 to n; the predecessor lists are 
kept sorted by vertex number. Thus the cost of  merging two predecessor lists and 
eliminating duplicates is proportional to the sum of  their lengths. 

We are now ready to compute the cost of  O(n) top-level calls to MERGE. Since there 
are only n vertices, these top-level calls can result in only n - 1 additional calls in step 4, 
or O(n) calls in all. There are O(n) calls to F IND from step 1, O(mn) from step 4, and 
O(m 2) from CONGRUENT,  or O(m 2) calls in all. There are no more than n - 1 calls to 
UNION. In the fast implementation of  U N I O N  and F I N D  analyzed in [9], U N I O N  takes 
constant time and O(m 2) calls to F IND take O(m 2) time. The total cost of  splicing 
predecessor lists is O(n2). Thus, the asymptotic worst-case time for O(n) merges is O(m2). 

The double loop used in step 4 to find new congruent pairs is not very sophisticated. I f  
the set of  predecessors of  the two vertices is lexicographically sorted on the sequences of  
their successors' equivalence classes, then congruent vertices will be adjacent in the sorted 
list. The cost of  finding all new congruent pairs is proportional to the sum of the lengths 
of  the predecessor lists mstead of  to the product. I f  step 4 is changed in this way, the time 
bound for the algorithm becomes O(mn). 

In the sophisticated algorithm of Downey, Sethi, and Tarjan [3], the vertices are kept in 
a hash table keyed by the list of  equivalence classes of  their successors. Step 4 can be 
implemented so that only the vertices in the shorter predecessor list need be rehashed. The 
average Ume for O(n) merges using their algorithm is O(m log m). 

We have implemented both the O(m 2) and the O(m log m) algorithms. The more 
sophisticated algorithm is not faster for our applications. The reason is that the predecessor 
lists are short, so that the double loop runs at about the same speed as in the more 
sophisticated method. 

3. The Quantifier-Free Theory of Equality 

In this section, we show how the decision problem for the quantifier-free theory of  equality 
with uninterpreted function symbols reduces to the congruence closure problem. 

The language of  the quantifier-free theory of  equality consists of  variables, unmterpreted 
function symbols, the usual Boolean connectives, and the predicate =. An example of  a 
formula m the theory is x = y D fix)  = f ly) .  To determine the validity of  a formula, it 
suffices to determme the unsatisfiability of  the disjunctive normal form of  its negation. 
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The disjunction is unsatisfiable if and only if each of  its disjuncts is unsatisfiable, so it 
suffices to describe an algorithm for determining the satisfiability of  conjunctions of  
literals. 

DECISION PROCEDLrRE. This algorithm determines the satisfiability of  the conjunction 
of  equalities and disequalities 

tx = ul  A . . . A tp --  Up A rl  # s l  A . . . A rq # Sq. 

1 Construct a graph G which corresponds to the set of all terms appearing m the conjunction For each term t 
appearing m the conJunction, let ¢(0 be the vertex m G representing t Let R be the ldenUty relation on the 
verttces of G 

2 For 1 _< i _< p, merge r(t,) with ¢(u,) using the MERGE procedure given above. 

3. For I _< i ~ q, if r(r,) is eqmvalent to ¢(s,), the conjunction is unsamfiable 
4. Otherwise, the conjunction ts satisfiable 

Using the sophisticated version of  MERGE,  the above procedure determines the 
satisfiability of  a conjunction of  length n in average time O(n  log n). 

It is straightforward to verify that the algorithm is correct if it returns UNSATISFIABLE.  
To show that it is correct if it returns SATISFIABLE, we construct an interpretation 
satisfying F. 

Let S be the partition of  the vertices of  G corresponding to the final equivalence relation. 
maps individual variables into elements of  S (that is, equivalence classes of  vertices) and 

k-ary function symbols into functions from S k to S. 
If  x is an individual variable, let ~ x )  be the equivalence class of  any vertex labeled x 

with outdegree 0. (Since all such vertices are equivalent, this definition is unambiguous.) 
I f f  is a function variable, let ~ f ) ( Q 1  . . . . .  Qk) be the equivalence class of  any vertex v 
in V such that ~(v) = f,  6(0 = k, and for all i between 1 and k ,  v[i] ~ Qi.  ( ~ f )  is 
well-defined because, if two vertices u and v both satisfy these conditions, they are con- 
gruent and therefore m the same equivalence class.) I f  no such vertex v exists, then 
~ f ) ( Q a  . . . . .  Qk) is arbitrary. 

It is straightforward to verify that for all terms t in F, ~ t )  is the eqmvalence class of  
z(0. Thus ~ satisfies F, since r(t,) is in the same equivalence class as r(u,) for each i, and 
~'(r,) is in a different equivalence class than ~(s,) for each i. 

4. E x t e n s i o n  to Theor ies  o f  L i s t  S t r u c t u r e  

The congruence closure algorithm forms the basis for a fast deciston procedure for 
determining satisfiability in the quantifier-free theory of  list structure with unmterpreted 
function symbols. The language of  this theory is the language of  the quantifier-free theory 
of  equahty plus distinguished function symbols CAR, CDR, and CONS and predicate 
symbol ATOM, satisfying the following axioms: 

CAR(CONS(x, y)) ffi x, 
CDR(CONS(x,  y)) = y, (1) 
--ATOM(x) D CONS(CAR(x), CDR(x)) = x, 
--ATOM(CONS(x,  y)). 

CAR, CDR, CONS, and ATOM are the well-known functions and predicates of  LISP. 
An example of  a theorem m this theory is 

CAR(x) = CAR(y)  A CDR(x) -- CDR(y)  A --ATOM(x) A ~ A T O M ( y )  Dr(x)  = f l y ) .  

Notice that we do not restrict the domain of  the LISP functions to noncircular lists, so that 
a formula like CAR(x) = x is satisfiable. If  we include axioms enforcing acyclicity of  hst 
structure (as in Pure LISP) and exclude uninterpreted function symbols, a faster algorithm 
is possible than the one described here. Oppen [7] describes a decision procedure which 
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determines the saUsfiabihty of conjunctions over the quantifier-free theory of (pure) LISP 
in linear time. 

The algorithm represents terms by vertices in a directed graph as in Section 3. The basic 
idea of the decision procedure is to add all relevant instances of axiom schema (1) to this 
graph. For each term CONS(x, y) represented in the graph, we will add the equalities 
x = CAR(CONS(x, y)) and y = CDR(CONS(x, y)) to the graph. 

We assume that each literal ATOM(t) appearing negatively has been eliminated from 
the conjunction and replaced by an equality t = CONS(u, v), where u and v are variables 
appeanng nowhere else in the formula. Therefore, the only literals involving ATOM are 
positive. 

DECISION PROCEDURE. This algorithm determines the satisfiability of a conjunction F 
of the form 

ATOM(u1) A ATOM(u2) A . . .  A ATOM(uq) A 
111 " ~  W l  A ° • • A V r  "~" W r  A 
xl#ylA...Ax~#y~, 

where the terms in the literals may contain uninterpreted function symbols as well as the 
functions CAR, CDR, and CONS. 

1 Construct a graph G which corresponds to the set of all terms appeanng in the conjunction For each term t 
appeanng m the conjunctton, let ~-(t) be the vertex m G representing t For ! <_ z ~ r, call MERGE(¢(v,), ¢(w,)) 

2 For each vertex u in G labeled CONS, add vertices v, labeled CAR, and w, labeled CDR, both with ontdegree 
i, such that v[l] = will = u Call MERGE(v, u[i]) and MERGE(w, u[2]) (That is, given a term CONS(x, y), 
add verttces representing CAR(CONS(x, y)) and CDR(CONS(x, y)) and merge them with the vertices repre- 
senting x and y ) 

3 For z from 1 to s, tf ~-(x,) is equivalent to ~-(y,), return UNSATISFIABLE For t from 1 to q, If the eqmvalence 
class of t-(u,) contains a vertex labeled CONS, return UNSATISFIABLE Otherwise, return SATISFIABLE 

If the length of the formula F is n, the size of G after step 2 is O(n). The average time 
required by this decision procedure to determine the satisfiability of a conjunction of 
literals is therefore O(n log n) using the fast congruence closure algorithm. 

PROOF OF CORRECTNESS. It is straightforward to verify that the algorithm is correct if 
it returns UNSATISFIABLE. Suppose that it returns SATISFIABLE; we construct an 
interpretation satisfying F. 

Let So be the partition of the vertices of G corresponding to the final equivalence 
relation. We define two functions CAR0 and CDR0 from So to So, and a function CONS0 
from a subset of So × So to So. If  the equivalence class Q contains a vertex v with a 
predecessor u labeled CAR, then CARo(Q) is the equivalence class of u; otherwise CARo(Q) 
is arbitrary. If Q contains a vertex v with a predecessor u labeled CDR, then CDRo(Q) is 
the equivalence class of u; otherwise CDRo(Q) is arbitrary. The pair (Q1, Q2) is in the 
domain of CONSo only if there exists a vertex v labeled CONS such that v[l] E Q1 and 
v[2] E Q2; in this case CONSo(Q1, Q2) is the equivalence class of v. Note that CARo, 
CDRo, and CONS0 are well defmed because the graph is closed under congruences. 

Unfortunately, CONSo is not a total function. To construct an interpretation, we must 
extend CONS0 to be defined on all of So x So. We first extend it to a function CONS1 
which agrees with CONSo where CONS0 is defined, and otherwise just returns the ordered 
pair of its arguments. Since CONS1 returns elements of So x So, the range So of the 
interpretation must be extended to a set $1 that includes both So and part of So x So. But 
then CONS~ is not total and must be extended so that it is defined on all of S~ x S~. To 
construct an interpretation we repeat this extension step infinitely many times. 

More precisely, suppose that we have defined the first i + 1 quadruples in the infinite 
sequence (So, CONSo, CAR0, CDRo), (Sx, CONS1, CAR1, CDR1), . . . ,  (S,, CONS,, CAR,, 
CDR3 . . . . .  We define the next quadruple (S,+l, CONS,+1, CAR,+~, CDR,+0 by the 
following rules. 
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Let D, be the domain o f  CONS,. 

(1) S,+l = S,  U St X St - Dr. 
(2) The domain of  CONS,+i is St x S,. CONS,+i(x, y) = CONS,(x, y) if (x, y) is in the 

domain of  CONS,; CONSt+i(x, y) = (x, y) otherwise. 
(3) CAR,+i(x) -- CAR,(x) if x E St. Otherwise x ~ S, x S, - D, and is thus an ordered 

pair (y, z); in this case define CAR,+~(x) = y. 
(4) CDRt+~(x) = CDR,(x) i fx  E S,. Otherwise x ~ S, x S, - Dt and is thus an ordered 

pair (y, z); in this case define C D R , + i ( x )  = 2. 

We now show that, for each i, CARt, CDRt, and CONS, have the following two 
properties. 

(1) If  (x, y) is in the domain of  CONS,, then CAR,(CONS,(x, y)) = x and 
CDR,(CONS, (x ,  y))  = y. 

(2) I f x  is m the range of  CONS,, then (CAR,(x), CDR,(x)) is in the domain of  CONS,, 
and CONSt(CARt(x), CDR,(x)) = x. 

Consider first the base case, when i = 0 and x and y are eqmvalence classes. If  (x, y) is 
in the domain of  CONS0, then there is a vertex u with h(u) = CONS, u[l] E x, and 
u[2] E y. Since u is a CONS, two vertices v and w labeled CAR and CDR, respectively, 
were added as predecessors of  u. The vertices v and w satisfy the requirements of  the 
definitions of  CAR0 and CDR0, so CAR0(CONS0(x, y)) is the equivalence class of  v and 
CDRo(CONS0(x, y)) is the equivalence class of  w. Furthermore the pairs (v, u[1]) and 
(w, u[2]) were added to R in step 2, so v and w are in the equivalence classes x and y, 
respectively. The proof that CARo, CDRo, and CONSo have the second property is similar. 

Suppose now that CONS,, CAR,, and CDR, satisfy properties 1 and 2. If  (x, y) 
is in the domain of  CONS,, then CONSt+~(x, y) = CONS,(x, y); at follows that 
CARt+i(CONS,+i(x, y)) = CARt(CONS,(x, y)) = x and CDR,+~(CONSt+i(x, y)) = 
CDR, (CONS, (x ,  y)) = y by the induction hypothesis. Otherwase, CONS,+~(x, y) as the 
ordered pair (x, y), and CARt+i(CONSt+i(x,  y)) = x and CDR,+~(CONS,+~(x, y))  = y by 
definition. A similar argument shows that CONS,+1, CARt+l, and CDR,+i satisfy prop- 
erty 2. 

It follows by reduction that, for all i, the functions CARt ,  CDR,, and CONS, have the 
two properties. 

Let S '  be the union of  all the St. Let CAR'(x) be CAR,(x) for the first i such that x E 
S,. Let CDR'  and CONS'  be defined similarly. It follows that CAR',  CDR' ,  and CONS'  
have properUes 1 and 2 and that CONS'  is defined on all of  S '  x S'. 

We are finally ready to define an interpretation xk satisfying F. The range of  tk is S'. 
interprets CAR, CDR, and CONS as CAR',  CDR',  and CONS'.  An element of  S '  is 
anterpreted to be nonatomic if and only if it is in the range of  CONS'.  I f  f is an 
uninterpreted function symbol, Q~ . . . . .  Qk are m S, and there exists a vertex v such that 
~(v) = f,  8(0 = k, and v[i] E Q, for each i from 1 to k, then 6(f)(Q~ . . . . .  Qk) is the 
eqmvalence class of  v. I f  this definition does not determine the value of  ~/(f), then the 
value is arbitrary. 

It follows from properties 1 and 2 and the fact that the set of  nonatoms is exactly the 
range of  CONS'  that this interpretauon satisfies axiom schema (2). It remains to show that 
~k satisfies F. 

It is straightforward to show that for each term t in the original formula, ~ 0  is the 
equivalence class of  z(t). But "r(vt) and ,(w,) have been merged for each i from 1 to r, so tk 
satisfies the equalities in F. "r(xt) and ~'(Y3 are in different eqmvalence classes (since step 
3 returned SATISFIABLE), so tk satisfies the dasequalities in F. Finally, no equivalence 
class of  any ,(u,) contains a node labeled CONS; hence these classes are not m the range 
of  CONSo. They are certainly not in the range of  any of  the other functions CONS,, so 
they are interpreted as atoms by ~k. Hence tk satisfies F. 

This completes the proof of  correctness of  the decision procedure. 
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Somewhat surprisingly, when the result o f  a selector function on an atom is specified by 
the axioms, the problem of  determining the satisfiability of  a conjunction o f  literals 
becomes NP-complete. Consider the following axioms for the theory of  CAR, CDR, and 
CONS with the single atom NIL: 

CAR(CONS(X, Y)) = X, 
CDR(CONS(X, Y ) ) =  Y, 
X # NIL D CONS(CAR(X),  CDR(X))  = X, 
CONS(X, Y) # NIL, 
CAR(NIL) = CDR(NIL) = NIL. 

We show that the problem of determining the satisfiability in this theory o f  a conjunction 
of  equalities and disequahties between terms containing CAR, CDR, CONS, NIL, and 
uninterpreted function signs is NP-complete. 

It is straightforward to show that the problem is in NP, since a nondeterministic program 
can guess the equivalence relaUon on the set of  terms in the conjunction and then check 
that the equivalence relation does not violate any of  the above axioms or the substitutivity 
of  equality. 

To show that the problem is NP-hard, we will reduce the 3-CNF satisfiability problem 
for propositional calculus to it. (See [2].) 

Let P1 . . . . .  Pn be propositional variables and F a conjunction of  three-element clauses 
over the P,. We construct a conjunction G of  equalities and disequalities between list- 
structure terms involving CAR, CDR, CONS, NIL, and the 2n variables X1, Y~ . . . . .  Xn, 
Yn such that G is satisfiable if and only if F is. 

The first part of  G is 

CAR(X1) = CAR(Y1)/~ CDR(X~) = CDR(Y1)/k X~ # Y1 A 
CAR(X2) = CAR(Y2) A CDR(X2) = CDR(Y2) A X2 # Y2 A 

: (2) 

CAR(Xn) = CAR(Yn) A CDR(X~) = CDR(Yn) A Xn # Yn. 

For no t can X, and Y, both be non-NIL, smce then X, and Y, would be equal by the 
third axiom and the substitutwity of  equality. One of  them must be NIL  and the other 
CONS(NIL, NIL). 

Given an interpretation ~p for G, we construct an interpretation ¢p for F by defining dr(P,) 
to be TRUE if and only if ~p(X,) = NIL. The remaining conjuncts in G guarantee that ~p 
satisfies G if and only if th satisfies F. 

We demonstrate the construction with an example. If  one of  the clauses of  F is Pt ~/ 
-~P2 W Pa, we want to add a conjunct to G which is eqmvalent to (Xl = NIL  V X2 # NIL  
V X3 = NIL). In light of  (2), this is eqmvalent to 

-1(Y2 = NIL A X2 = NIL/~  Y3 = NIL), 

or to the single hteral 

CONS(Yz, CONS(X2, Y3)) # CONS(NIL, CONS(NIL, NIL)). 

Note that we have shown the problem is NP-hard even without uninterpreted function 
symbols. A simdar construcUon can be used whenever the result of  a selector function on 
an atom Is specified. The problem ts also NP-complete with the axiomatizatlon (1) if 
predicates are interpreted as Boolean-valued funcuons and literals such as F(ATOM(x)) 
# F(ATOM(y)) are allowed. 
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