Frogramming lLanguages

D. GRIES, Editos™ °

Proof of a Program: FIND

C. A. R. Hoare
Queen’s University,* Belfast, Ireland

A proof is given of the correctness of the algorithm “Find.”
First, an informal description is given of the purpose of the
program and the method used. A systematic technique is de-
scribed for constucting the program proof during the process
of coding it, in such o way as to prevent the intrusion of
logical errors. The proof of termination is treated as a sep-
arate exercise. Finally, some conclusions relating to general
programming methodology are drawn.

KEY WORDS AND PHRASES: proofs of programs, programming method-
ology, program documentation, program correctness, theory of programming

CR CATEGORIES: 4.0, 4.22, 5.21, 5.23, 5.24

1. Introduction

In a number of papers 1, 2, 3] the desirability of proving
the correctness of programs has been suggested and this
has been illustrated by proofs of simple example programs.
In this paper the construction of the proof of a useful,
efficient, and nontrivial program, using a method based on
invariants, is shown. It is suggested that if a proof is con-
structed as part of the coding process for an algorithm, it
is hardly more laborious than the traditional practice of
program testing,

2. The Program “Find”’

The purpose of the program Find [4)] is to find that
element of an array A[1:N] whose value is fth in order of
magnitude; and to rearrange the array in such a way that
this element is placed in A[f]; and furthermore, all ele-
ments with subscripts lower than f have lesser values, and
all elements with subsecripts greater than f have greater
values. Thus on completion of the program, the following
relationship will hold:

AQ), AR2), - A = N S A S AlF+ 1), -+, A[N)

This relation is abbreviated as Found.
One method of achieving the desired effect would be to

* Department of Computer Science

Volume 14 / Number 1 / January, 1971

LLioond
L_oomation melence
L evneuce wniversity
sort the whole array. If the array is small, thin;would be a
good method; but if the array is large, the time talibhi€o
sort it will also be large. The Find program is designed to
take advantage of the weaker requirements to save much
of the time which would be involved in a full sort.

The usefulness of the Find program arises from its
application to the problem of finding the median or other
quantiles of a set of observations stored in a computer
array. For example, if N is odd and f is set to (N + 1)/2,
the cffect of the Iind program will be to place an observa-
tion with value equal to the median in A[f]. Similarly the
first quartile may be found by setting f to (N + 1)/4,
and =0 on.

The method used is based on the principle that the
desired effect of Find is to move lower valued elements of
the array to one end—the “left-hand” end—and higher
valued elements of the array to the other end—the “right-
hand” end. (See Table I(a)). This suggests that the array
be scanned, starting at the left-hand end and moving right-
ward. Any element encountered which is small will re-
main where it is, but any element which is large should be
moved up to the right-hand end of the array, in exchange
for a small one. In order to find such a small element, a
separate scan i1s made, starting at the right-hand end and
moving leftward. In this scan, any large element encoun-
tered remains where it is; the first small element encoun-
tered is moved down to the left-hand end in exchange for
the large element already encountered in the rightward
scan. Then both scans can be resumed until the next ex-
change is necessary. The process is repeated until the
scans meet comewhere in the middle of the arrav. It is
then known that all elements to the left of this meeting
point will be small, and all elements to the right will be
large. When this condition holds, we will say that the array
is split at the given point into two parts (see Table I(b)).

The reasoning of the previous paragraph assumes that
there is some means of distinguishing small elements from
large ones. Since we are interested only in their compara-
tive values, it is sufficient to select the value of some ar-
bitrary element before either of the scans starts; any ele-
ment with lower value than the selected element is counted
as small, and any clement with higher value is counted as
large. The fact that the discriminating value is arbitrary
means that the place where the two scans will meet is also
arbitrary; but it does not affect the fact that the array
will be split at the meeting point, wherever that may be.

Now consider the question on which side of the split the
fth element in order of value is to be found. If the split is
to the right of A[f], then the desired element must of
necessity be to the left of the split, and all elements to the
right of the split will be greater than it. In this case, all
elements to the right of the split can be ignored in any
future processing, since they are already in their proper

Communications of the ACM 39

place, namely to the right of A{f] (see Table I{¢c)). Similarly,
if the split is to the left of A[f], the element to be found
must be to the right of the split, and all elements to the
left of the split must be equal or less than it; furthermore,
these elements can be ignored in future processing.

In either case, the program proceeds by repeating the
rightward and leftward scans, but this time one of the scans
will start at the split rather than at the beginning of the
array. When the two scans meet again, it will be known
that there is a second split in the array, this time perhaps
on the other side of A[f]. Thus again, we may proceed
with the rightward and leftward scans, but we start the
rightward scan at the split on the left of A[f] and the
leftward scan at the split on the right, thus confining atten-
tion only to that part of the array that lies between the

TasLE |

{a) 1

move small values left

move large values right

(b)

. A -
Y Y
rightward scan has leftward scan has
covered these elements, covered these
and they are ail smail elements, and they
are all large

‘ Consequently . the

1 £ array s split here N,
(c) BluDJeleni[7Inl7Ts[shal2[17T20]30[25 18 17 [30]
N J

Y

~
the n smallest values of
the array are in this
part; including the fth
largest valuve.

all etements here
are greater than
any to the left

L f N
(d) [[]]

w/ A — y}

teft part:! middle part: right part

all ete- |further scans arelall elements > those

ments < |confined to this |of middle part

those of | part.

middle |

part ..__J

40 Communications of the ACM

two splitx; this will be known as the middle part of the array
(see Table I(d)).

When the third scan iz complete, the middle part of the
array will be split again into two parts. We take the new
middle part as that part which contains Alf] and repeat
the double scan on this new middle part. The process is
repeated until the middle part consists of only one ele-
ment, namely A[f]. This element will now be equal to or
greater than all elements to the left and equal to or less
than all elements to the right: and thus the desired result
of Find will be accomplished

This has been an informal description of the method
used by the program Find. Diagrams have been used to
convey an understanding of how and why the method
works, und they serve as an intuitive proof of its correct-
ness. However, the method is described only in general
terms, leaving many details undecided; and accordingly,
the intuitive proof js far from watertight. In the next sec-
tion, the details of the method will be filled in during the
process of coding it in a formal programming language; and
simultancously, the details of the proof will be formalized
in traditional logical notation. The end product of this
activity will be a program suitable for computer execution,
together with a proof of its correctness. The reader who
checks the validity of the proof will thereby convince him-
self that the program requires no testing.

3. Coding and Proof Construction

The coding and proof construction may be split into
several stages, each stage dealing with greater detail than °
the previous one. Furthermore, each stage may be SYV'S-
tematically analvzed as a series of steps.

3.1. Stace 1: ProBLEM DEerINITION

The first stage in coding and proof construetion is to ob-
tain a rigorous formulation of what is to be accomplished,
and what may be assumed to begin with. In this case we
may assume

(a) The subseript bounds of A are 1 and N.

(b) 1 <f<N.

The required result is:

Vp, el < p <f<q < ND AP < Al < Alg)
[Found]

3.2. StaGE 2: THE GENERAL METHOD

(1) The first step in each stage is to decide what vari-
ables will be required to hold intermediate results of the
program. In the case of Find, it will be necessary to know
at all times the extent of the middle part, which is currently
being scanned. This indicates the introduction of variables
m and n to point to the first element A{m] and the last
element A{n] of the middle part.

(2) The second step is to attempt to describe more for-

Volume 14 / Number 1 / January, 1971

mallv the purpose of each variable, which was informally
described in the previous step. This purpose may be cx-
pressed as a formula of logic which is intended to remain
true throughout the execution of the program, even when
the value of the variable concerned is changed by assign-
ment.! Such a formula is known as an invariant. As men-
tioned above, m is intended to point to the leftmost ele-
ment of the middle part of the array; and the middle part
at all times contains A[f]; consequently m is never greater
than f. Furthermore, there is always a split just to the left
of the middle part, that is between m — 1 and m. Thus the
following formula should be true for m throughout cxecu-
tion of the program:

m<f&Vp, gl <p<m<Lq<NDAp) < Afg)
[m-invariant)

Similarly, n is intended to point to the rightmost element
of the middle part; it must never be less than f, and there
will always be a split just to the right of it:

f<n&Vp, gl <p<n<g<ND AP L Ag))
[n-invariant]

(3) The next step is to determine the initial values for
these variables. Since the middle part of the array is in-
tended to be the part that still requires processing, and
since to begin with the whole array requires processing, the
obvious choice of initial values of m and n are 1 and N,
respectively, indicating the first and last elements of the
whole array. The code required is:

n:=N

(4) Tt is necessary next to check that these values satisfyv
the relevant invariants. This may be done by substituting
the initial value for the corresponding variable in each in-
variant, and ensuring that the result follows from factx
already known:

1<fSND1<f&

m:=1;

Vp, g1 <p<1<¢g<NDA[p] L Alg)) [Lemma 1]
1 <fSNDfSN&
Vp,q(1 <p <N <qg<NDAlp <Alg)) [Lemma 2]

The quantified clause of each lemma is trivially true since
the antecedents of the implications are always false.

(5) After setting the initial values, the method of the
program is repeatedly to reduce the size of the middle part,
until it contains only one element. This may be accom-
plished by an iteration of the form:

while m < n do ‘‘reduce middle part”’

(6) It remains to prove that this loop accomplishes the
objectives of the program as a whole. If we write the body
of the iteration properly (i.e. in such a way as to preserve
the truth of all invariants) then all invariants will still be
true on termination. Furthermore, termination will occur

! Except possibly in certain *‘critical regions.”

Volume 14 / Number 1 / January, 1971

only when m < n goes false. Thus it is necessary only to
show that the combination of the truth of the invariants
and the falsity of the while clause expression m < 7n im-
plies the truth of Found.

m<f&Vp, gl <p<m<g<NDA[p < Alg))
&f<n &Vp gl <p<n<qg<NDAp < Alg)
& m<n

DVp, g1 <p<f<q<ND Alp) < Alf) € Alg))
{Lemma 3]

The antecedents imply thatm = n = £ If1 < p < f<gq
< N, then cither p = f, in which case A[p] < A[f] is ob-
vious, or p < f, in which case substituting f for both m and
q in the first quantified antecedent gives Afp] < A[f]. A
similar argument shows that A[f] < Alg].

At thix point, the general structure of the program is as
follows:

m:=1;n:= N\,

while m < n do ‘‘reduce middle part”

Furthermore, this code has been proved to be correet, pro-
vided that the body of the contained iteration is correct.

3.3. Stace 3: REDUCE THE MippLe ParT

(1) The process for reducing the middle part involves a
xcan from the left and from the right. This requires two
pointers, ¢ and j, pointing to elements A[¢] and A[j] re-
spectively. In addition, a variable r is required to hold the
arbitrary value which has been selected to act as a dis-
criminator between “‘small” and “large” values.

(2) The 7 pointer is intended to pass over only those ar-
ray elements with values smaller than r. Thus all array ele-
ments strictly to the left of the currently scanned element
A[7] will be known always to be equal to or less than r:

m<Ii&Vp(l <p<iDAlp] <) [¢ invariant]

Similarly the j pointer passes over only large values, and
all elements strietly to the right of the currently scanned

element A{j] are known always to be equal to or greater
than r:

JE€n&Ve(j < ¢ < NDr < Alg)h [j-invanant]

Since the value of r does not change, there is no need for an
r-invariant.

(3) The i pointer starts at the left of the middle part,
i.e. at m; and the j pointer starts at the right of the middle
part, i.c. at n. The initial value of r is taken from an ar-
bitrary element of the middle part of the array. Since
A[f]} is always in the middle part, its value is as good as
any.

(4) The fact that the initial values satisfy the Z- and
j-invanants follows directly from the truth of the corre-

Communications of the ACM 41

sponding m- and n-invariants; this is stated formally in the
following lemmas:

fEN&EmLSf&
Vp, gl <p<m < q< NDA[p| < Alg))

Dm<m&Vp(l <p<m>DAp] £ Alf])
{Lemma 4]

1<f&f<né&
Vp, gl <p<n<qg<NDAp < Alg)

Dn<n&Vgn < g <NDA[f]l < Alg))
(Lemma 5)

The first of these is proved by setting ¢ to f and the second
by setting p to f.

(5) After setting the initial values, the method is to re-
peatedly add one to 7 and subtract one from j, until they
cross over. This may be achieved by an iteration of the
form:

while ¢ < j do ‘“‘increase ¢ and decrease j”

On exit from this loop, j < 7 and all invariants are intended
to be preserved.

If j and ¢ cross over above f, the proposed method as-
signs j as the new value of n; if they cross over below f, 7 is
assigned as the new value of m.

iff < jthenn:=j
elseif 1 < fthenm := 1

else go to L

The destination of the jump will be determined later.

(6) The validity of these assignments is proved by show-
ing that the new value of n or m satisfies the corresponding
invariant whenever the assignment takes place. In these
proofs it can be assumed that the ¢- and j-invanants hold;
and furthermore, since the assignment immediately fol-
lows the iteration of (5), it is known that j < 7. Thus the
appropriate lemma is:

Ji<i&Vp(l <p<iDAf]p) <)

&VYq(j <g<NDr < 4
Diff<jthenf <j&

Vp, 91 £p <j<g < N)DA[p < 4fp)

elseifi < fthen: < f&
Vp,¢(1 £ p <i<q<NDAp < Alg))
[Lemma 6]

The proof of this is based on the fact thatif 1 < p <j <
q £ N, then p < ¢ (since j < 7), and both A{p] < r and
r < Alg]. Hence A[p] < Alg). Similarly,if 1 < p < i <
g < N, then j < g, and the same result follows.

It remains to determine the destination of the jump go
to L. This jump is obeyed only if j < f < ¢, and it happens
that in this case it can be proved that the condition Found

42 Communications of the ACM

has already been achieved. It is therefore legitimate to

jump straight to the end of the program. The lemma which
justifies this is:

1SfSN&j<f<i&Vp(lSp<i3A[p]Sr)
&Ve(j <9 < NDr < Afg)

D Vp,q(l Sp<f<q<NDAD < AN < Alg)
[Lemma 7]

This may be readilv proved: if f is put for ¢ in the antece-
dent, we obtain » < A[f]. Similarly, putting f for p in the
antecedent we obtain A[f] < r. Hence A[f] = r. If 1 <p<
f<qg< N,thenl Sp<i(sincef<i)andj<qg<N
(sincej < f) and hence the i-invariant states that Alp)<r
and the j-invariant states that r < A[q]. But r has already
been proved equal to A[f].

This concludes the outline of the program required to
reduce the middle part:

ri=A[fl;i :=m; j:=n;

while i < j do “increase ¢ and decrease j”’;
iff<jthenn :=j;
elseif 1 < fthenm := ¢

else go to L

This program has been proved to be correct, in that it pre-
serves the truth of both the m- and n-invariants, provided
that the body of the contained loop preserves these in-
variants as well as the ¢- and j-invariants.

3.4. STAGE 4: INCREASE i AND DECREASE j

At this stage there is no need to introduce further vari-
ables and no further invariants are required. The construc-
tion of the code is not therefore split into the steps as be-
fore.

The first action of this part of the program is to use the
i-pointer to scan rightward, passing over all elements with
value less than 7. This is accomplished by the loop:?

while A[i] < rdoi := ¢t + 1

The fact that this loop preserves the truth of the invariant
is expressed in the obvious lemma:

ARl S r&m <i&Vp1 <p<iDAlp) <1

Om<i+1&Vp(1<p<i+1DA[p)<r
[Lemma 8)*

* The reason for the strict inequality is connected with termina-
tion. See Section 4.

This lemma is not strictly true for some implementations of
computer arithmetic. Suppose that N is the largest number repre-
sentable in the integer range, that m = i = N, and that modulo
arithmetic is used. Then i + 1 will be the smallest number repre-
sentable, and will certainly be less than m. The easiest way to
evade this problem is to impose on the user of the algorithm the
insignificant restriction that N < maxint, where maxint is the
largest representable integer.

Volume 14 / Number 1 / January, 1971

The next action is to use the j-pointer to scan leftward,
passing over all elements greater than r. This is accom-
plished by the loop:

whiler < Afj]jdoj:i=j —1
which is validated by the truth of:
r<AL)&j <n&Vq(j <g< NDr < Afg)
Dji—1<n&Ve(ij—-1<g<NDr <Al
{Lemma 9}
On termination of the first loop, it is known that r < Ali},
and on termination of the second loop A[j} < r. If 7 and j

have not crossed over, an exchange of the elements they
point to takes place. After the exchange, it is obvious that

Af) < r < Af),

and hence Lemmas 8 and 9 justify a further increase in ¢
and decrease in j:

if 1 < j then
begin ‘‘exchange A[i] and A[j)”;
t:=14+1; ji=j3—-1
end
Thus the process of increasing 7 and decreasing j pre-
serves the truth of all the invariants, provided that the ex-
change of A{i] and A[j] does so, and the program takes the
form:
while Alt] < rdoi =1t + 1;
while r < Afjldoj =7~ 1;
if 1 < j then
begin ‘‘exchange A[{} and A{j]";
ti=1i41; j:i=j—-1
end

3.5. StaGE 5: ExcHANGE Ali] axD A[j]
The code for performing the exchange is:

w = Afs); Al := A[j);

Although this code uses a new variable w, there is no need
to establish an invariant for it, since its value plays a
purely temporary role.

The proof that the exchange preserves the invariants is
not trivial, and depends critically on the fact that © < j.
Let A’ stand for the value of the arrav as a whole after the
exchange has taken place. Then obviously:

Al i=w

A’l) = Alj] (1)
A'lj] = Al (2)
Vs(s = i&s#=jD A'ls] = Als)) 3)

The preservation of the ¢-invariant is stated in the lemma:
m<i<j&Vpl<p<iDAlpI<r

ODOm<i&Vp(l £p<iD Ap] <r) [Lemma 10]
This is proved by observing that if p < ¢ < jthenp =
and p # j and by (3), 4’[p] = Alp].

Yolume 14 / Number 1 / January, 1971

Similarly the preservation of the J-invariant is guaran-
teed by the lemma:

1SS n&V(G<g<NDr< Al

DiSn&V(j <9< N>Dr< Al [Lemma 11]

The .proof likewise proceeds by observing that i < j < ¢
implies that ¢ # 7 and q # j, and therefore by (3), A’lq] =
Alq].

The preservation of the m-invariant is guaranteed by the
truth of the following lemma:

m<t<j&Vpql <p<m<qg<ND AP < Alg)

DVp ¢l <p<m<qg<ND AP < Alq))
[Lemma 12)

Outline proof:

A.'ssumel S p<m<q< N;hencep # tand p » j
(since p < m < i < j). Therefore by (3),

A’[p] = Afpl. @)

Substituting 1 and then j for ¢ in the antecedent, we obtain
Alpl < Ali} and Alp) < A[j). Consequently A’[p] < A'[5]
and A’[p] < A’[] (from (4), (1), and (2)). Furthermore,
for all ¢ # 1 and ¢ = j, A'[p] = Alp) < Alg] = 4'lg] (b
(4) and (3)). Hence 4'[p] < A'lg) for all g(m < ¢ < N).

The preservation of the n-invariant is guaranteed by a
similar lemma:

1Sj<n&Vp g1 <p<n<qg<NDAlp < Alg)
DVpql<p<n<qg<NDAp < Aq)
fLemma 13)

The proof is very similar to that of Lemma 12, and is left
as an exercise.

3.6. TuE WHOLE PRroGRAM

The gradual evolution of the program code and proof
through several stages has been carried out in the previous
sections. In presenting the code of the program as a whole,
the essential invariants and other assertions have been
preserved as comments. Thus a well-annotated version of
the program appears in Table II.

4. Termination

The proof given so far has concentrated on proving the
correctness of the program supposing that it terminates;
and no attention has been given to the problem of proving
termination. It is easier in this case to prove termination of
the inner loops first.

The proof of the termination of:
while Alil < rdot:=i 41

depends on the recognition that at all times there will be
an element in the middle part to the right of A[i] whose

Communications of the ACM 43

TasLE II

begin
comment This program operates on an array A{1:N], and a
value of f(1 € f € N). Its effect is to rearrange the elements
of 4 in such a way that:
vp.q(1Sp<f<gSNDA[p]S AlfIS Algl);
integer m, n; comment
m < f & wp,g(1Sp<m<LgSNDA(pI< Alg)),
f<n &yp,g(1<p<n<gSNDA[p|< 4lgl);
m:=1; n:=N;
while m < n do
begin integer r, 1, j, w;
comment
m < 1 & yp(1<p<iDAlp]<r),
JSn &ye(i<g<NDOrLAlg);
r:=Alf]; 1:=m; j:=n;
while 7 < jdo
begin while A{il < rdot:=1: 4+ 1;
whiler < Alj]jdoj =7 -1
comment Afj] < r < A[i];
if1 < j then
begin w 1= A[i]; Ali] := A[j);
comment Ali] < r < Al
1i=141;, ji=3-1;
end
end increase ¢ and decrease j;
iff<jthenn:=j
else if it < fthenm := 1
else go to L
end reduce middle part;
L:
end Find

Alj) o= wy

value is equal to or greater than r. This element will act as
a ‘‘stopper’’ to prevent the value of i from increasing be-
vond the value n. More formally, it is necessary to estab-
lish an additional invariant for 7, which is true before and
during the loop; i.e. throughout execution of ‘‘reduce
middle part.” This invariant is:

Api <p<n&r < Alp) (3)

Obviously if this is true, the value of 7 is necessarily
bounded by n; it cannot increase indefinitely, and the loop
must therefore terminate.

The fact that (5) is an invariant for the duration of the
particular loop is established by the following lemmas:

m<f<nDdpm <p<n&Alf] < Alp]) [Lemma 14]
Proof: take f for p.

Al <r&3pi < p <né&r < Alp))
D3Api+1<p<n&r < Alp) [Lemma 15)

Proof: consider the p whose existence is asserted by the
antecedent. Since r < Alp] & A{] < r, p # i. Hence
i+ 1< p
r<Afl&i+1<7j~-1&j <n

DApG+1<p<n&r < Ap) [Lemma 16]

44 Communications of the ACM

Proof: Take j for p. Then A'[p] = A’(j] = Als) > r.

Lemma 14 shows that the invariant is true after the
initialization of “reduce middle part.” Lemma 15 shows
that the invariant is preserved by while A[] < r do
t:= 1 4+ 1, and Lemma 16 shows that the invariant is
preserved by the final compound statement of “reduce
middle part,” providing that ¢ < j after the execution of
this statement. Sinee the body of the loop is not reentered
unless this condition is satisfied, the invariant is uncondi-

tionally true at the beginning of the second and subsequent
repetitions of “reduce middle part.”
The termination of the loop

whiler < Afj]doj:=j -1

is established in a very similar manner. The additional in-
variant is

Fem < ¢ <L j& Alg £7) (6)

and the lemmas required are Lemma 14 and
r< A& 3gim < g Lj& Alg) < 7)

DIgm < g<j—1&Alg <) [Lemma 17]
Al <r&i+1<j—1&m<i
D3gm<g<j—1& A% <r) . [Lemma 18]

The proofs of these lemmas are very similar to those for
Lemmas 15 and 16.

This proof of termination is more than usually complex;
if the program were rewritten to include an extra test
(r £ norm < j) in each loop, termination would have been
obvious. However, the innermost loops would have been
rather less efficient.

The proof of termination of the middle loop is rather
simpler. The loop for increasing ¢+ and decreasing j must
terminate; since if the conditional statement it contains is
not obeved then j is already less than ¢, and termination is
immediate; whereas if j > 7, then 7 is necessarily incre-
mented and j decremented, and they must cross over after
a finite number of such operations.

Proof of the termination of the outermost loop depends
on the fact that on termination of the middle loop both
m < ¢ and j < n. Therefore whichever one of the assign-
ments m := ¢ or n := j is executed, the distance between
n and m is strictly decreased. If neither assignment is
made, go to L is executed, and terminates the loop im-
mediately.

The proof that at the end of the middle loop bothm < ¢
and j < n depends on the fact that on the first execution of
the loop body the conditional if i < j then... is actually
executed.-This is because at this stage A[f] is still equal to
r, and therefore the rightward scan of ¢ cannot pass over
A[f]. Similarly the leftward scan of j cannot pass over
Alf). Thus on termination of both innermost loopst < f < j.
Thus the condition 7 < j is satisfied, and 7 is necessarily
incremented. and j is necessarily decremented. Recall that
this reasoning applies only to the first time round this

Volume 14 / Number I / January, 1971

4

loop—but once is enough to ensure m < ¢ and j < #n;
since 7 is a nondecreasing quantity and j is a nonincreasing
quantity.

5. Reservation

In the proof of Find, one very important aspect of cor-
rectness has not been treated, namely, that the program
merely rearranges the elements of the array A, without
changing any of their values. If this requirement were not
stated, there would be no reason why the program Find
should not be written trivially:

fort1 := 1 step 1 until N do
Al =1

since this fully satisfies all the other criteria for correctness.

The easiest way of stating this additional requirement
is to forbid the programmer to change the array A4 in any
other way than by exchanging two of its elements. This
requirement is clearly met by the Find program and not
by its trivial alternative.

If it is desired to formulate the requirement in terms of
conditions and invariants, it is necessary to introduce the
concept of a permutation; and to prove that for arbitrary
Ao,

A is a permutation of Ao, [Perm]

is an invariant of the program. Informally this may be
proved in three steps:

(a) “exchange Ali] and A[j],” is the only part of the

program which changes 4,

{(b) exchanging is a permutation,

(c) the composition of two permutations is also a per-

mutation.

The main disadvantages of the formal approach are il-
lustrated by this example. It is far from obvious that the
invariance of Perm expresses exactly what we want to
prove about the program; when the definition of Perm is
fully and formally expressed, this is even less obvious; and
finally, if the proof is formulated in the manner of the
proofs of the other lemmas of this paper, it is very tedious.

Another problem which remains untreated is that of
proving that all subscripts of A are within the bounds 1
toN.

6. Conclusion

This paper has illustrated a methodology for systematic
construction of program proofs together with the programs

Volume 14 / Number 1 / January, 1971

they prove. It uses a “top-down” method of analysis to
split the process into a number of stages, each stage em-
bodying more detail than the previous one; the proof of
the correctness of the program at each stage leads to and
depends upon an accurate formulation of the characteris-
tics of the program to be developed at the next stage.

Within each stage, there are a number of steps: the de-
cision on the nature of the data required; the formulation
of the invariants for the data; the construction of the code;
the formulation and proof of the lemmas. In this paper, the
stages and steps have been shown as a continuous progress,
and it has not been necessary to go back and chapge de-
cisions made earlier. In practice, reconsideration of earlier
decisions is frequently necessary, and this imposes on the
programmer the need to reestablish the consistency of in-
variants, program, lemmas, and proofs. The motivation for
taking this extra trouble during the design and coding of a
program is that it is hoped to reduce or eliminate trouble
at phases which traditionally come later—program testing,
documentation, and maintenance.

Similar systematic methods of program construction are
described in [5] and [6]; this present paper, however, places
greater emphasis on the formalization of the characteristics
of the program as an aid to the avoidance of logical and
coding errors. In future, it may be possible to enlist the
aid of a computer in formulating the lemmas, and perhaps
even in checking the proofs (7, 8].

Acknowledgments. The author is grateful to the referee
and to the retiring editor for his meticulous comments and
general encouragement in the preparation of this paper.

RECEIVED SEPTEMBER, 1069; REVISED May, 1970

REFERENCES

1. Naur, P. Proof of algorithms by general snapshots. BIT 6 (1966)
310-316.

2. Dukstra, E. W. A constructive approach to the problem of
program correctness. BIT 8§ (1968), 174-186.

3. Hoarr, C. A. R. An axiomatic approach to computer program-
ming. Comm. ACM 12, 10 (Oct. 1969), 576-580, 583,

4. Hoarr, C. A. R. Algorithm 65, Find. Comm. ACM 4, 7 July
1961), 321.

5. Naur, P. Programming by action clusters. BIT 9 (1969),
250-258.

6. DusxsTra, E. W. Structured Programming [EWD249] T.H.E.
(privately circulated).

7. FLorp, R. W. Assigning meanings to programs. Proc. Amer.
Math. Soc. Symposium in Applied Mathematics, Vol. 19,
pp. 19-31.

8. King, J. C. A program verifier. Ph.D. Th., Carnegie-Mellon
U., Pittsburg, Pa., Sept. 1969.

Communications of the ACM AS

