
#1

What Have We Learned?What Have We Learned?

#2

Semantics = “Meaning”

• Operational Semantics
– Large-Step - common in papers, very easy

• < e, σ > ⇓ v < c, σ > ⇓ σ’
– Small-Step - common in papers

• < c, σ > → < c’, σ’ >
– Contextual - model heap, threads, global stuff

• (if • then 1+2+3 else c2) [true] → (•+3) [1+2]

• Denotational Semantics
• Axiomatic Semantics

– Verification Condition Generation
• PCC, SLAM, ESC/Java, etc.

#3

Lambda Calculus = “Model”

• Model of programming and computation
– Encodings - true, if, +, pairs, …

• Lambda Type Systems
– Simply-Typed - Γ ` x + 3 : int
– Recursive Types - α list = µt. () + (α × t)
– Subtypes - coercion, OO
– Imperative Types - references, exceptions
– Second-Order Types - length : α list → int
– Dependant Types - array-of-length(x)
– Linear Types - cannot leak resources

#4

Proof And Meaning

• Structural Induction proof technique
– if Γ0 ` e : τ and <e, σ0> ⇓ v then v ∈ |τ|
– “Type Safety”, “Subject Reduction”

• Abstract Interpretation analysis framework
– α(3) = “positive”; x ∈ γ(α(x))

• Automated Theorem Proving
– Cooperating Decision Procedures

#5

Advanced Models

• Pi Calculus model of concurrency
– Synchronous message passing, 1st-class channels

• Region-Based Memory Management
– As safe as garbage collection, faster than malloc

• Sigma Calculus model of objects
– Method invocation is primal
– (ok, we didn’t see this …)

#6

Bug-Finding
• Software Model Checking

– Linear temporal logic, “eventually”
– State space exploration

• SLAM project for finding bugs
– convert c program to boolean program with

axiomatic semantics and theorem provers
– model check boolean program
– explore counterexample with symbolic execution

(operational semantics)

• Cooperative Bug Isolation

#7

Conclusions

•• PL is the topic of ultimate masteryPL is the topic of ultimate mastery
• Theory, practice, models, engineering,

proofs and impact
Common PL Research

• Design – evaluate language features with
formal semantics and type systems

• Analysis – evaluate existing programs for
correctness or other properties

• Implementation – build scalable systems,
work on real-world code

