
1

#1

RegionRegion--Based Based
Memory ManagementMemory Management

#2

Today In A Single Slide

•• Memory management has two problems: Memory management has two problems:
freeing things too early and freeing things freeing things too early and freeing things
too late.too late.

•• Regions are an abstraction in which related Regions are an abstraction in which related
objectssobjectss are allocated together and freed at are allocated together and freed at
once. once.

#3

Memory Management
• Manual memory deallocation is dangerous

– Deallocate too late ⇒ memory leaks ⇒ performance
problems

– Deallocate too early ⇒ dangling pointers ⇒ safety
problems

• Most type-safe languages disallow manual memory
deallocation
– Because their type systems cannot check absence of

dangling pointers
– Such languages use garbage collection ⇒ lack of control

• Question: Is there an effective type system for
memory mgmt that allows deallocation?
– Current best answer: region-based memory management

#4

Regions
• a.k.a. zones, arenas, …
• Every object is in exactly one

region
• Allocation via a region handle
• Deallocate an entire region

simultaneously
(cannot free an individual
object)

• Supports easy serialization

#5

Region-based Memory
Management Example

Region r = newregion();

for (i = 0; i < 10; i++) {
int *x = ralloc(r, (i + 1) * sizeof(int));
work(i, x);

}
deleteregion(r);

#6

Region Expressiveness

• Adds structure to memory management
• Allocate objects into regions based on

lifetime
• Works well for objects with related lifetimes

• e.g., global/per-request/per-phase objects in a server

• Few regions:
– Easier to keep track of and reason about
– Delay freeing to convenient "group" time

• End of an iteration, closing a device, etc

• No writing "free data structure X" functions

2

#7

Region Expressiveness: lcc
• The lcc C compiler, written using unsafe

regions
– regions bring structure to an application's

memory
perm

func

stmt

Time #8

Region Expressiveness: lcc
• The lcc C compiler, written using unsafe

regions
– regions bring structure to an application's

memory
perm

func

stmt

Time

#9

Region Expressiveness: lcc
• The lcc C compiler, written using unsafe

regions
– regions bring structure to an application's

memory
perm

func

stmt

Time #10

Region Expressiveness: lcc
• The lcc C compiler, written using unsafe

regions
– regions bring structure to an application's

memory
perm

func

stmt

Time

#11

Region Expressiveness: lcc
• The lcc C compiler, written using unsafe

regions
– regions bring structure to an application's

memory
perm

func

stmt

Time #12

Region Expressiveness: lcc
• The lcc C compiler, written using unsafe

regions
– regions bring structure to an application's

memory
perm

func

stmt

Time

3

#13

Safe Region-Based Memory
Management

• When is it safe to deallocate a region?
– Unsafe if you later user a pointer to an object in it!
– Safe if objects in the same region point to each other
– But we must handle pointers between regions

• One Idea: nested regions lifetimes
– Use a stack of regions

• last region created is also first region deleted

– Stack frames are a special case of such regions
– Cannot point from older regions into newer ones
– Too restrictive in practice

• Today: use a type system to keep track of regions
#14

Region-Flow Type System

• In F1 we did not model where results of expressions
are allocated (e.g., pairs)
– Now we’ll extend F1 to track regions

• Specify in what region to store expression results
Expr: e ::= λx.e | e1 e2| … | e @ ρ | e ! ρ

Region names: ρ (“rho”, Greek letter “r”)

• New expressions:
– “e @ ρ” evaluates e and puts the result in region ρ

• We assume that each value lives in a region

– Think of “e ! ρ” as an assertion that value of e is in
region ρ plus “memcopy e from ρ”

#15

Example

let cons = λxλy. (x, y) @ ρL in
let lst = cons (2 @ ρ

E
)

(cons (1 @ ρE) (0 @ ρL)) in
… (fst (lst ! ρL)) ! ρE …

• Can deallocate ρL without creating
dangling pointers

• But if we deallocate ρE first
we create dangling pointers

2

0

1

ρL ρE

ρL for
lists, ρE for
elements

#16

Operational Semantics

• Values live in regions
v ::= … | <v>ρ

– “<v>ρ” means value v living in region ρ

• Evaluation rules

• Evaluation gets stuck if region check ! fails
– Check: same ρ above and below line

e @ ρ → <v>ρ

e → v
e ! ρ → v
e → <v>ρ

#17

Typing Rules
• Add a new type to keep track of regions for values

τ ::= b | τ1 → τ2 | τ @ ρ
• Typing rules are straightforward

• Types keep track of regions of values
– All values that can flow into one variable must be from

the same region
• Soundness result:

– In well-typed programs the annotations in “e ! ρ” are
always correct

– i.e., “e ! ρ” never gets stuck (and can be removed)

Γ ` e @ ρ : τ @ ρ
Γ ` e : τ

Γ ` e ! ρ : τ
Γ ` e : τ @ ρ

#18

Region-Flow Inference

• We start with unannotated programs
• We want to infer the region annotations as follows:

– Each value constructor v must be annotated
– Each deconstructor must be annotated

v ::= n @ ρ | (λx.e) @ ρ
e ::= v | (e1 ! ρ) e2 | (fst ! ρ) e

| if (e ! ρ) then e1 else e2

• We must know, at each use of a value, in what
region that value is allocated

4

#19

Annotation Example

• We abbreviate:
n @ ρ as nρ

(λ x. e) @ ρ as λρ x.e
(e1 ! ρ) e2 as e1

ρ e2

• Consider the code:
let fst = λ u. λ v. u in

(let x = λ p.(p 0) 1

in λ q. (q (x fst)) 2) fst

ρf ρ0ρx

ρf ρa

ρq ρxρf ρq

ρa

ρa

ρ1

ρ1

#20

Region-Flow Type Inference

• Type inference is always possible in this system
• There are multiple correct solutions

– e.g., use only one region throughout

• There is a “best” solution (up to renaming of
regions; best = uses largest # of regions)
– All other solutions can be obtained by merging some

regions in the best solution

• This program analysis is called value-flow analysis
– Can tell you what values could possibly flow to a use
– It is a weak form of analysis (equational)

For “x := y; x := z;” we get flow between x, y, z (in
both directions)

#21

Adding Region Allocation and
Deallocation

• So far we can track (statically) which values are in
which region

• We can think of “e @ ρ” as evaluating e and
allocating in region ρ space for the result

• We can think of “e ! ρ” as checking that the result
of e is in region ρ, and retrieving the result if so
– The type system tells us that the check is not necessary

at run-time. We do not even need to be able to tell at
runtime in which region an object is. No tags.

• Still need to know when it is safe to delete a region

#22

Region Irrelevance

• Assume Γ ` e : τ such that
– Region ρ is used in e
– Region ρ does not appear in Γ

• Means that before we start e region ρ is empty

– Region ρ does not appear in τ
• Means that the result of e does not refer to any values in ρ

– The region ρ is relevant only during the execution of e

• Example:
– After evaluation of (λρ0 x. x)ρ0 1ρ1 we can erase ρ0 if nothing in

the context uses it

• Idea: tie region lifetime (relevance) to static scoping

#23

Statically-Scoped Regions

• Add a new construct
e ::= … | letreg ρ in e

– Creates a new region and binds it to the name ρ
– After e terminates the region is deleted

• Example:
letreg ρ0 in (λρ0 x. x)ρ0 1ρ1 is well typed
letreg ρ0 in (cons 1ρ1 ((λρ0 x. x)ρ0 2ρ0))ρ1 is ill typed

• Type system can detect dangling references. What are they here?

Γ, R ` e @ ρ : τ @ ρ
Γ, R ` e : τ ρ ∈ R

Γ, R ` letreg ρ in e : τ
Γ, (R, ρ) ` e : τ ρ ∉ RegionVars(Γ, τ)

Γ, R ` e ! ρ : τ
Γ, R ` e : τ @ ρ

#24

Unsoundness

• This system works well in first-order languages, where the
type of a value fully describes its dependencies
– A value of type (int @ ρ1 × bool @ ρ2) @ ρ1 has references into

regions ρ1 and ρ2 only
– A value of type (int @ ρ1 + bool @ ρ2) @ ρ3 has references into regions

ρ3 and (ρ1 or ρ2). Conservatively in ρ1, ρ2 and ρ3

• In higher-order languages we cannot tell so easily
t = letreg ρ0 in let x = true @ ρ0 in

λ y.if x ! ρ0 then y else false @ ρ1

– body of letreg has type boolρ1 → boolρ1

– Later, when t is used, it will access a dangling pointer to x

• Problem: The type of a function describes only the
input/output behavior of the function
– It does not describe the execution of the function!

5

#25

Types and Effects

• We enrich the type system to contain information about the
computation not just the result
– For each computation we keep a set of effects (interesting events

that occur as it executes)

• New Judgment: Γ ` e :φ τ
– expression e computes a value of type τ and has effects among

those in the set φ
• We extend the function types as well

τ ::= int | τ @ ρ | τ1 →
φ τ2

• Example:
Γ ` e :φ1 int →φ2 int

– Expression e evaluates (with effects φ1) to a function, which when
given an int evaluates (with effects φ2) to an int

#26

Effects for Regions
• To detect dangling references we need to compute

for each expression what set of regions it
references at runtime

Γ ` x :∅ τ
Γ(x) = τ

Γ ` λx. e :∅ τ1 →
φ τ2

Γ, x : τ ` e :φ τ

Γ ` e1 e2 :φ1 ∪ φ2 ∪ φ τ’
Γ ` e1 :φ1 τ →φ τ’ Γ ` e2 :φ2 τ

Γ ` e @ ρ :φ ∪ { ρ } τ @ ρ
Γ ` e :φ τ

Γ ` e ! ρ :φ ∪ { p } τ
Γ ` e :φ τ @ ρ

Γ ` letreg ρ in e :φ – { ρ } τ
Γ ` e :φ τ ρ ∉ RegionVars(Γ, τ)

#27

Handling That Old Example

• Consider again the example
t = letreg ρ0 in

let x = true @ ρ0 in
λ y. if x ! ρ0 then y else false @ ρ1

– body of letreg has type
bool @ ρ1 →

{ρ0, ρ1} bool @ ρ1

• Now the type says that ρ0 is referenced by
the result of t. This program is now ill-typed
(i.e., we will notice the region leak).

#28

Effect Types Systems

• We have collected a set of regions referenced
• Effects can model other intrinsic properties of

functions (depending on how the computation
proceeds, not only on the result)
– Behavioral effects
– Effects now have structure, with sequencing, choice,

recursion
• Effects have also been used to model

– cryptographic protocols
– synchronization protocols
– interference analysis for threads
– cleanup actions (previous lecture included a type-and-

effect system for compensation stacks)

#29

Soundness
• Here is one way to argue soundness

– Soundness = no dangling pointers

• Change the operational semantics of letreg to
get stuck if the region is referenced in the result
of the body

• Prove that well-typed programs never get stuck
• Will this work? Why?

` letreg ρ in e ⇓ v
ρ’ = newregion() ` [ρ’/ρ]e ⇓ v ρ’∉RegionVars(v)

#30

Soundness Problems

• Consider the program
t = let z = 0 @ ρ0 in λ x.(λ y. x) z

– Type is ∅ ` t : {ρ0} int →∅ int
– Evaluates to t’s value = λ x.(λ y.x) <0>ρ0

– Not true that RegionVars(t’s value) = ∅

• Our system does allow dangling pointers
– But only when you will never dereference them

• In this respect it is more powerful than a garbage
collector (able to leap David Bacon in a single bound)
– Because it can see the rest of the computation
– The GC only sees a snapshot of the computation state

6

#31

• Introduce a special region called “dangling”
– Replace all dangling regions with this one
– And check that we never use it

• Prove now that well-typed programs do not get stuck
– No need to introduce the dangling checks at run-time

Soundness Attempt 2

` letreg ρ in e ⇓ [dangling/ρ’]v
ρ’ = newregion() ` [ρ’/ρ]e ⇓ v

` e ! ρ ⇓ v
σ ` e ⇓ <v>ρ ρ ≠ dangling

` e @ ρ ⇓ <v>ρ

σ ` e ⇓ v ρ ≠ dangling

#32

Region Polymorphism
• Consider this code again

let cons = λ xλ y. (x, y) @ ρL
• We need a different function to allocate pairs in

different regions. Inconvenient!
• Idea: allow functions to take regions as

parameters
• This is called region polymorphism
• We write let cons = λρ. λ x. λ y. (x, y) @ ρ
• Type of result of cons depends on the region

argument
• Type of cons is Πρ.τ1 → τ2 → (τ1 × τ2) @ ρ

#33

Region Polymorphism
• We add the following to the language

e ::= … | λ ρ. e (region abstraction)
| e ρ (region application)

τ ::= … | Πρ.φ τ (region polymorphism)
– In the type Πρ.φ τ region variable ρ is bound in φ and τ

– Note that region application does not “reference” the
region (it’s purely syntactic, as in “id [int] 5”)

– More opportunities for harmless dangling references

Γ ` λρ. e :∅ Πρ.φ τ
Γ ` e :φ τ

Γ ` e ρ’ :φ’∪[ρ’/ρ]φ [ρ’/ρ]τ
Γ ` e :φ’ Πρ.φ τ

#34

Effect Polymorphism
• Region polymorphism fails on higher-order languages
• Consider the map function for lists of integers
• Without regions:

map : (int → int) × intlist → intlist

• With regions (potentially moving the list also):
map : Πρ.Πρ’.∅ (int →φ int) × (intlist @ ρ)

→φ ∪ {ρ,ρ’} (intlist @ ρ’)
– But the effect φ is hardcoded
– Need a different map for each effect

• Déjà vu: Need effect polymorphism

#35

Effect Polymorphism

• We do not add syntax for effect polymorphism
– It is implicit; our type system tracks it

• We add types and typing rules
ε ∈ EffectVariables
τ ::= … | ∀ε. τ

– Very similar to value polymorphism

• We can now write the map function:
map : ∀ε.Πρ.Πρ’.∅ (int →ε int) × (intlist @ ρ)

→ε ∪ {ρ,ρ’} (intlist @ ρ’)

Γ ` e :φ ∀ε.τ
Γ ` e :φ τ ε ∉ EffectVars(Γ, φ)

Γ ` e :φ [φ’/ε]τ
Γ ` e :φ ∀ε.τ

#36

Regions In Practice
• Despite heavy use of regions in practice (systems code)

– Apache, Linux kernel, BerkeleyDB, etc.

• The (formal) study of regions is less than 15 years old
• Few languages include regions

– MLKit (an implementation of ML)
• Regions are inferred and used as an implementation mechanism

– RC (Gay and Aiken, Berkeley)
• Reference counting of inter-region pointers

– Cyclone (safe variant of C)
• Somewhat lighter-weight
• Global region, stack regions, lexically-scoped regions

– All of which failed to set the world on fire …

• Compromise between complexity of the typing annotations
and expressiveness
– Danger is that the type system may require regions to be long-lived

7

#37

Homework

• Project Due
– You have less than a fortnight to complete it.
– Need help? Stop by my office or send email.

