Grasar) | (CREVEET
(o) =
=

chim 1
Memory Management
o s e [7 v
BL? /o1 | EVERY SEVEM MIMJTES BY TURE LEARNING

COMMERTIMS EXTOLLING FROM THIS.
GREED AHD

\

1

Today In A Single Slide

* Memory management has two problems:

freeing things too early and freeing things
too late.

« RegiongElga@n abstraction in which related

Region

Heilbronn-Franken

Memory Management

» Manual memory deallocation is dangerous

- Deallocate too late == memory leaks = performance
problems

- Deallocate too early = dangling pointers = safety
problems

* Most type-safe languages disallow manual memory
deallocation

- Because their type systems cannot check absence of
dangling pointers

- Such languages use garbage collection = lack of control
» Question: Is there an effective type system for
memory mgmt that allows deallocation?
- Current best answer: region-based memory management

Regions

« a.k.a. zones, arenas, ...

 Every object is in exactly one
region

« Allocation via a region handle

« Deallocate an entire region
simultaneously
(cannot £ree an individual
object)

« Supports easy serialization

i3l #4
Region-based Memory Region Expressiveness
Management Example g P
)) Adds structure to memory management
Region r = newregion(); + Allocate objects into regions based on
for (i = 0; i < 10; i++) { lifetime o o
. . . . » Works well for objects with related lifetimes
int *x = rallOC(r, (i+1) * SIZGOf(Int)); - e.g., global/per-request/per-phase objects in a server
work(i, x); » Few regions:
- Easier to keep track of and reason about
} - Delay freeing to convenient "group” time
. . « End of an iteration, closing a device, etc
region(r
deleteregion(r); « No writing "free data structure X" functions
s} 6}

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func O

stmt O

Time

47

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func O

stmt D O

Time a

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func O

stmt b Q

Time

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func .) Q

stmt B O

Time 410

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func .) Q

stmt B B O

Time

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

fane - D

st ()L 0 C O

Time 4o

Safe Region-Based Memory
Management

* When is it safe to deallocate a region?
- Unsafe if you later user a pointer to an object in it!
- Safe if objects in the same region point to each other
- But we must handle pointers between regions

» One Idea: nested regions lifetimes

- Use a stack of regions
« last region created is also first region deleted

- Stack frames are a special case of such regions
- Cannot point from older regions into newer ones
- Too restrictive in practice

« Today: use a type system to keep track of regions

Region-Flow Type System

« In F; we did not model where results of expressions

are allocated (e.g., pairs)

- Now we’ll extend F, to track regions
 Specify in what region to store expression results

Expr: e:i=Ax.e | e ;e,| ... |e@p|e!lp
Region names: p (“rho”, Greek letter “r”)

+ New expressions:

- “e @ p” evaluates e and puts the result in region p

« We assume that each value lives in a region
- Think of “e ! p” as an assertion that value of e is in
region p plus “memcopy e from p”

Example

let cons = AxAy. (X, y) @ p in
let Ist = cons (2 @ pE)

(cons (1 @ pe) (0@ py)) in

. (fst (Ist ! p)) ! pg ...

 Can deallocate p, without creating
dangling pointers

» But if we deallocate p; first
we create dangling pointers

lists, pg for
elements

Operational Semantics

« Values live in regions
vi=.| V>,
- “<v>.” means value v living in region p
» Evaluation rules
e v
e@p— <v>,
« Evaluation gets stuck if region check ! fails
- Check: same p above and below line

€ — <V>,

elp—> v

Typing Rules
« Add a new type to keep track of regions for values
ti=b |t 21 |tep
« Typing rules are straightforward
e:
'~eep:t@p

ThHe:t@p
Felp:t

Types keep track of regions of values

- All values that can flow into one variable must be from
the same region

Soundness result:

- In well-typed programs the annotations in “e ! p” are
always correct

- i.e., “e ! p” never gets stuck (and can be removed)

Region-Flow Inference

» We start with unannotated programs
« We want to infer the region annotations as follows:
- Each value constructor v must be annotated
- Each deconstructor must be annotated
vi=nep| (Ax.e)ep
ei=v |(e!p e, | (fst!p)e
| if (¢! p) then e, else e,

+ We must know, at each use of a value, in what
region that value is allocated

Annotation Example

« We abbreviate:

nep as ne
(Ax.e)ep as AP X.€
(e;!p) e, as €," &

« Consider the code:
let fst = A”u. X°v. uin

Po | Pa P1

(let x=Xp.(p™ 0°)" 1

Pq

in 2X'q. (" (x"fst))” 2" fst

Region-Flow Type Inference

» Type inference is always possible in this system

» There are multiple correct solutions

- e.g., use only one region throughout

There is a “best” solution (up to renaming of

regions; best = uses largest # of regions)

- All other solutions can be obtained by merging some
regions in the best solution

» This program analysis is called value-flow analysis
- Can tell you what values could possibly flow to a use
- It is a weak form of analysis (equational)

For “x :=y; x := z;” we get flow between x, y, z (in
both directions)

Adding Region Allocation and
Deallocation

» So far we can track (statically) which values are in
which region

We can think of “e @ p” as evaluating e and
allocating in region p space for the result

We can think of “e ! p” as checking that the result
of e is in region p, and retrieving the result if so

- The type system tells us that the check is not necessary
at run-time. We do not even need to be able to tell at
runtime in which region an object is. No tags.

Still need to know when it is safe to delete a region

Region Irrelevance

e AssumeT F e : 7 such that
- Region p is used in e
- Region p does not appear in I"
« Means that before we start e region p is empty

- Region p does not appear in t
« Means that the result of e does not refer to any values in p

- The region p is relevant only during the execution of e

« Example:

- After evaluation of (APox. x)?° 1¢" we can erase p, if nothing in
the context uses it

 Idea: tie region lifetime (relevance) to static scoping

Statically-Scoped Regions

» Add a new construct
e:=..| letregpine
- Creates a new region and binds it to the name p
- After e terminates the region is deleted

IR, p)Fe:r p ¢ RegionVars(T, 1)
ILRE letregpine:t

ILRe:t peR

INRFeep:t@p

ILRFe:t@p
IREelp:t

« Example:
letreg py in (APox. x)0 101 is well typed
letreg p, in (cons 1°! ((APox. x)»0 200))P1 is ill typed
« Type system can detect dangling references. What are they here?

123 |

Unsoundness

« This system works well in first-order languages, where the
type of a value fully describes its dependencies
- Avalue of type (int @ p, x bool @ p,) @ p, has references into
regions p, and p, only
- Avalue of type (int @ p, + bool @ p,) @ p; has references into regions
p; and (p, or p,). Conservatively in p;, p, and p;
« In higher-order languages we cannot tell so easily
t = letreg p, in let x = true @ p, in
Ly.if x ! py theny else false @ p,
- body of letreg has type bool*t — boolrt
- Later, when t is used, it will access a dangling pointer to x
» Problem: The type of a function describes only the
input/output behavior of the function
- It does not describe the execution of the function!

Types and Effects

* We enrich the type system to contain information about the
computation not just the result

- For each computation we keep a set of effects (interesting events
that occur as it executes)

e New Judgment: T'-e ¢t

- expression e computes a value of type t and has effects among
those in the set ¢

« We extend the function types as well
tu=int|t@p | 1y =201y
« Example:
ke int - int

- Expression e evaluates (with effects ¢,) to a function, which when
given an int evaluates (with effects ¢,) to an int

Effects for Regions

» To detect dangling references we need to compute
for each expression what set of regions it
references at runtime [Lx:the:rt

I'-2x. e:fr —br,

TFe g —¢t” The,:27

T'ke ez :#lu2U¢ ¢

rx)=r
T'kx:ft
T'te:tr
Treep:virlitep
ez p ¢ RegionVars(T, 1)
T'tletregpine :#-{r} ¢

Ttedtep
Fkelp:virlyg

125 126
Handling That Old Example Effect Types Systems
« Consider again the example » We have collected a set of regions referenced
-1 . » Effects can model other intrinsic properties of
t = letreg py In functions (depending on how the computation
let x = true @ p, in proceeds, not only on the result)
. - Behavioral effects
!
Ay. if x1p theny else false @ p, - Effects now have structure, with sequencing, choice,
- body of letreg has type recursion
bool @ p, {0 1} bool @ p « Effects have also been used to model
! . ! - cryptographic protocols
» Now the type says that p, is referenced by - synchronization protocols
the result of t. This program is now ill-typed ﬂvﬂmm?mﬁW#wwf$.ldd . y
: . . . - Cleanup actions (previous lecture included a e-ana-
(i.e., we will notice the region leak). effect Eystem forpcompensation stacks) v
27] 28]

Soundness

» Here is one way to argue soundness
- Soundness = no dangling pointers

» Change the operational semantics of letreg to
get stuck if the region is referenced in the result
of the body

p’ =newregion() F [p’/ple v p’zRegionVars(v)

Fletregpine v

» Prove that well-typed programs never get stuck
« Will this work? Why?

Soundness Problems

« Consider the program
t=letz=0@pgin A x.(Ay. X) z
- Typeis 0+ t: ©3int —?int
- Evaluates to t’s value = A X. (A y.x) <0>po

- Not true that RegionVars(t’s value) = 0

e Our system does allow dangling pointers
- But only when you will never dereference them
« In this respect it is more powerful than a garbage
collector (able to leap David Bacon in a single bound)
- Because it can see the rest of the computation
- The GC only sees a snapshot of the computation state

Soundness Attempt 2

« Introduce a special region called “dangling”
- Replace all dangling regions with this one
- And check that we never use it

p’ = newregion() Flp'/ple d v

F letreg p in e | [dangling/p’]v

ckel <v>, p=dangling

Fe! \%
Pl cFelv p=dangling

Feepl <v>,

« Prove now that well-typed programs do not get stuck
- No need to introduce the dangling checks at run-time

Region Polymorphism
Consider this code again

letcons =A XL y. (X, y) @ p_

» We need a different function to allocate pairs in
different regions. Inconvenient!

Idea: allow functions to take regions as
parameters

This is called region polymorphism
e Wewrite let cons =2p. AX. L y. (X, y) @ p

» Type of result of cons depends on the region
argument

e Type of cons is TIp.ty — 1, = (74 X 13) @ p

Region Polymorphism
» We add the following to the language
ei=..|Ap.e (region abstraction)
| ep (region application)
T i=..| Ip.2t (region polymorphism)
- In the type I1p.? t region variable p is bound in ¢ and t

Fe:tr e TIp.tt

T'-ip.e:?Tp.tz Ckep’ @Up/ele [p’/plt
- Note that region application does not “reference” the
region (it’s purely syntactic, as in “id [int] 5”)
- More opportunities for harmless dangling references

Effect Polymorphism

Region polymorphism fails on higher-order languages
Consider the map function for lists of integers
Without regions:

map : (int — int) x intlist — intlist
With regions (potentially moving the list also):

map : TIp.ITp’.? (int —¢ int) x (intlist @ p)

—t Ul (intlist @ p’)

- But the effect ¢ is hardcoded
- Need a different map for each effect
Déja vu: Need effect polymorphism

Effect Polymorphism

« We do not add syntax for effect polymorphism
- It is implicit; our type system tracks it
« We add types and typing rules
¢ € EffectVariables
ti=..| Ve, 1
- Very similar to value polymorphism

I'ke:t ¢ ¢EffectvVars(l, ¢) I'ke:®Ver

lke:tVer F'ke:t[¢’/elr
« We can now write the map function:
map : Ve.ITp.TIp’.? (int —¢ int) x (intlist @ p)
—e Ui (intlist @ p’)

Regions In Practice

Despite heavy use of regions in practice (systems code)
- Apache, Linux kernel, BerkeleyDB, etc.
The (formal) study of regions is less than 15 years old

Few languages include regions
- MLKit (an implementation of ML)
« Regions are inferred and used as an implementation mechanism
- RC (Gay and Aiken, Berkeley)
« Reference counting of inter-region pointers
- Cyclone (safe variant of C)
« Somewhat lighter-weight
« Global region, stack regions, lexically-scoped regions
- All of which failed to set the world on fire ...
Compromise between complexity of the typing annotations
and expressiveness
- Danger is that the type system may require regions to be long-lived

#36]

Homework

» Project Due
- You have less than a fortnight to complete it.
- Need help? Stop by my office or send email.

