= WART Y
RE. YR L =
WRITING P #7

A RENSEHIST

AT BIGRARRT
‘&1 W : 3

HISTRRY 1S THE FICTION | THATS Wil EVENTS RRE
1 e i To PERSUMDE | ALWMS REINTERPRETED
{ | | CURSELVES THAT EVENTS | WHEM WAUES CHANGE
WE MEED NEW VERSIHS
B| OF WISTORT TO ALOW FOR.
QR CURRENT PREWOKES

.

Double Header

o Two Lectures
- Model Checking
- Software Model Checking
- SLAM and BLAST
o “Flying Boxes”
- It is traditional to describe this stuff (especially SLAM
and BLAST) with high-gloss animation. Sorry.
» Some Key Players:
- Model Checking: Ed Clarke, Ken McMillan, Amir Pnueli
- SLAM: Tom Ball, Sriram Rajamani
- BLAST: Ranjit Jhala, Rupak Majumdar, Tom Henzinger

#2

Take-Home Message

» Model checking is the exhaustive exploration
of the state space of a system, typically to
see if an error state is reachable. It produces
concrete counter-examples.

» The state explosion problem refers to the
large number of states in the model.

» Temporal logic allows you to specify

Overarching Plan

» Model Checking (Today)
- Transition Systems (Models)
- Temporal Properties
- LTL and CTL
- (Explicit State) Model Checking
- Symbolic Model Checking
» Counterexample Guided Abstraction Refinement
- Safety Properties

‘ >) - Predicate Abstraction (“c2bp”)
properties with concepts like “eventually” - Software Model Checking (“bebop”)
and “always”. - Counterexample Feasibility (“newton”, “hw 5”)
- Abstraction Refinement (weakest pre, thrm prvr)
Spoiler Space Topic:

« This stuff really works!
- This is not ESC or PCC or Denotational Semantics
» Symbolic Model Checking is a massive
success in the model-checking field

- | know people who think Ken McMillan walks on
water in a “ha-ha-ha only serious” way

o SLAM took the PL world by storm
- Spawned multiple copycat projects

- Incorporated into Windows DDK as “static driver
verifier”

(Generic) Model Checking

» There are complete courses in model
checking; | will skim.
- Model Checking by Edmund C. Clarke, Orna
Grumberg, and Doron A. Peled, MIT press
- Symbolic Model Checking by Ken McMillan

Model Checking

» Model checking is an automated technique
» Model checking verifies transition systems
» Model checking verifies temporal properties

» Model checking can be also used for
falsification by generating counter-examples

» Model Checker: A program that checks if a
(transition) system satisfies a (temporal)
property

47

Verification vs. Falsification

An automated verification tool

- can report that the system is verified (with a proof)
- or that the system was not verified (with 7??)
When the system was not verified it would be
helpful to explain why

- Model checkers can output an error counter-example: a
concrete execution scenario that demonstrates the error

« Can view a model checker as a falsification tool
- The main goal is to find bugs
« OK, so what can we verify or falsify?

48

Temporal Properties

» Temporal Property: A property with time-related
operators such as “invariant” or “eventually”

« Invariant(p): is true in a state if property p is true
in every state on all execution paths starting at
that state

- The Invariant operator has different names in different
temporal logics:
* G, AG, O (“goal” or “box” or “forall”)

» Eventually(p): is true in a state if property p is true
at some state on every execution path starting
from that state

« F, AF, { (“diamond” or “future” or “exists”)

An Example Concurrent Program

o Asimple concurrent mutual ~ 10: while True do

exclusion program 11: wait (turn = 0);
« Two processes execute // critical section
asynchronously 12: turn := 1;
» There is a shared variable 13: end while:
turn

» Two processes use the
shared variable to ensure
that they are not in the
critical section at the same 20: while True do
time 21:

+ Can be viewed as a // critical section
“fundamental” program: 22 = 0:
any bigger concurrent one : uen 2= 0
would include this one 23: end while

| // concurrently with

wait(turn = 1) ;

Reachable States
of the Example Program

Each state is a valuation
of all the variables:
turn and the two program
counters for two processes

Transition Systems

« In model checking the system being analyzed is
represented as a labeled transition system
T=6G,L,RL)
- Also called a Kripke Structure
- S = Set of states
- l<S =Set of initial states // standard FSM
- R< S xS = Transition relation // standard FSM
- L: S — P(AP) = Labeling function // this is new!
» AP: Set of atomic propositions (e.g., “x=5")
- Atomic propositions capture basic properties
- For software, atomic props depend on variable values

- The labeling function labels each state with the set of
propositions true in that state

// standard FSM

Properties of the Program

» Example: “In all the reachable states
(configurations) of the system, the two
processes are never in the critical section at
the same time”

- Equivalently, we can say that
e Invariant(—(pc1=12 A pc2=22))

« Also: “Eventually the first process enters the
critical section”

« Eventually(pc1=12)

e “pc1=12", “pc2=22" are atomic properties

Temporal Logics

« There are four basic temporal operators:

1) X p = Next p, p holds in the next state

2) G p = Globally p, p holds in every state, p is
an invariant

3) F p = Future p, p will hold in a future state,
p holds eventually

4) p U g = p Until g, assertion p will hold until
q holds

» Precise meaning of these temporal
operators are defined on execution paths

Execution Paths

« A path in a transition system is an infinite sequence
of states

(So» S1» Sy, -..), such that Vi>0. (s;, s;,{) € R
A path (sg, sy, S, -..) is an execution path if s, € |
Given a path x = (s, S¢, Sp, ---)
- x;denotes the ith state s;

x' denotes the ith suffix (s;, Si.1, Sizz> ---)

In some temporal logics one can quantify the paths
starting from a state using path quantifiers

- A: for all paths

- E : there exists a path

Linear Time Logic (LTL)

o LTL properties are constructed from atomic
propositions in AP; logical operators A, v, —; and
temporal operators X, G, F, U.

« The semantics of LTL properties is defined on
paths:

Given a path x:

XEp iff L(xq, P) // atomic prop
XEXp iff x"Ep // next

xXEFp iff 3i>0. x' Ep /1 future

xEGp iff Vi>0.x Ep /1 globally
xEpUq iff 3Ji>0.x'kFqandVj<i.xiEp // until

#16

Satisfying Linear Time Logic

 Given a transition system T = (S, I, R, L) and
an LTL property p, T satisfies p if all paths
starting from all initial states | satisfy p
« Examples:
- Invariant(—(pc1=12 A pc2=22)):
G(—(pc1=12 A pc2=22))
- Eventually(pc1=12):
F(pc1=12)

Computation Tree Logic (CTL)

« In CTL temporal properties use path quantifiers
- A: for all paths
- E: there exists a path

« The semantics of CTL properties is defined on
states:

Given a path x

s Ep iff L(s, p)

s FEXp iff Japath (sy, Sy, S5, -..). S{EP

s FAXp iff ¥ paths (sy, Sq, Sy, -..). S{EP

s FEGp iff Japath (sy Sy, Sy, -..). Vi20. s, E p
s FAG p iff V¥ paths (s, S, Sy, ...). Vi20. s, F p

Linear vs. Branching Time

o LTL is a linear time logic
- When determining if a path satisfies an LTL formula we
are only concerned with a single path
o CTL is a branching time logic

- When determining if a state satisfies a CTL formula we
are concerned with multiple paths

- In CTL the computation is not viewed as a single path but
as a computation tree which contains all the paths

- The computation tree is obtained by unrolling the
transition relation
» The expressive powers of CTL and LTL are
incomparable
- Basic temporal properties can be expressed in both logics
- Not in this lecture, sorry! (Take a class on Modal Logics)

#19

Remember the Example

One path starting at state Li nea r VS . BranC hi ng Ti me

(turn=0,pc1=10,pc2=20)

(§=g\o‘ Linear Time Branching Time |
{22 View View

A computation tree
\ starting at state
110,20/ (turn=0,pc1=10,pc2=20)

\11,21/ AN N
1,2y . . © (om0 [em

r 12,21/ \10,20/
/e=0\ . . R N> A N

LTL Satisfiability Examples

(Op does not hold @np holds

On this path: F p holds, G p does not hold, p does not hold,
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds

(O p does not hold

@ holds CTL Examples
s s s
At state s: At state s: At state s:
EF p, EX (EX p), EF p, AF p, EF p, AF p,
AF (=p), —p holds EX (EX p), AG p, EG p,
EX p, EG p, p holds Ex p, AX p, p holds
AF p, AG p,

AG (-p), EX p, AGp, AG (-p), EG (= p), EF (=p),
EG p, p does not hold ~ AF (—p) does not hold §ges not hold

123 |

Model Checking Complexity

« Given a transition system T = (S, I, R, L) and a CTL
formula f
- One can check if a state of the transition system satisfies
the temporal logic formula f in O(|f| x (|S| + [R])) time
« Given a transition system T = (S, I, R, L) and an
LTL formula f
- One can check if the transition system satisfies the
temporal logic formula f in O(2!fl x (|S| + [R])) time
* Model checking procedures can generate counter-
examples without increasing the complexity of
verification (= “for free”)

State Space Explosion

« The complexity of model checking increases
linearly with respect to the size of the
transition system (|S| + |R])

» However, the size of the transition system
(IS| + |R|) is exponential in the number of
variables and number of concurrent
processes

 This exponential increase in the state space
is called the state space explosion
- Dealing with it is one of the major challenges in

model checking research

Explicit-State Model Checking

» One can show the complexity results using
depth first search algorithms
- The transition system is a directed graph

- CTL model checking is multiple depth first
searches (one for each temporal operator)

- LTL model checking is one nested depth first
search (i.e., two interleaved depth-first-
searches)

- Such algorithms are called explicit-state model
checking algorithms (details on next slides)

Temporal Properties = Fixpoints

» States that satisfy AG(p) are all the states which
are not in EF(—p) (= the states that can reach —p)

« Compute EF(—p) as the fixpoint of Func: 25 — 25

e GivenZ CS, | Thisis called the
- Func(Z) = —p U reach-in-one-step(z) 11Yerse image of Z

- or Func(Z) = —p U EX(Z)
o Actually, EF(—p) is the [east-fixpoint of Func
- smallest set Z such that Z = Func(Z)

- to compute the least fixpoint, start the iteration from
Z=, and apply the Func until you reach a fixpoint

- This can be computed (unlike most other fixpoints)

Pictoral Backward Fixpoint

Inverse Image of —p = EX(—p)

Initial ’
states

initial states that violate AG(p)

-,) states that can reach —p = EF(—p)
= initial states that satisfy EF(—p)

= states that violate AG(p)

This fixpoint computation can be used for:

« verification of EF(—p) ... and a similar forward
ps : ixpoint handles th: t
« or falsification of AG(p) fixpoint handles the res

128 |

Symbolic Model Checking

» Symbolic Model Checking represent state sets and
the transition relation as Boolean logic formulas

- Fixpoint computations manipulate sets of states rather
than individual states

- Recall: we needed to compute EX(Z), but Z C S

« Forward and backward fixpoints can be computed
by iteratively manipulating these formulas
- Forward, inverse image: Existential variable elimination
- Conjunction (intersection), disjunction (union) and

negation (set difference), and equivalence check

« Use an efficient data structure for manipulation of
Boolean logic formulas
- Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs)

« Efficient representation for boolean
functions (a set can be viewed as a function)

« Disjunction, conjunction complexity: at most
quadratic

» Negation complexity: constant

 Equivalence checking complexity: constant
or linear

» Image computation complexity: can be
exponential

Symbolic Model Checking
Using BDDs

» SMV (Symbolic Model Verifier) was the first CTL
model checker to use a BDD representation
« It has been successfully used in verification
- of hardware specifications, software specifications,
protocols, etc.
* SMV verifies finite state systems

- It supports both synchronous and asynchronous
composition

- It can handle boolean and enumerated variables

- It can handle bounded integer variables using a binary
encoding of the integer variables

« It is not very efficient in handling integer variables although this

Where’s the Beef

« To produce the explicit counter-example, use the
“onion-ring method”
- A counter-example is a valid execution path

- For each Image Ring (= set of states), find a state and
link it with the concrete transition relation R

- Since each Ring is “reached in one step from previous
ring” (e.g., Ring#3 = EX(Ring#4)) this works

- Each state z comes with L(z) so you know what is true at
each point (= what the values of variables are)

Initial O

M D

can be fixed
231] 432 |
o Key Terms
Building Up To:
; K e CEGAR = Counterexample guided abstraction
Software Model CheCk].ng via refinement. A successful software model-
Counter-Example Guided checking approach. Sometimes called
Abstraction Refinement Iterative Abstraction Refinement”.
o SLAM = The first CEGAR project/tool.
Developed at MSR.
» There are easily two dozen » Lazy Abstraction = A CEGAR optimization
SLAM/BLAST/MAGIC papers; | will skim. used in the BLAST tool from Berkeley.
« Other terms: c2bp, bebop, newton,
npackets++, MAGIC, flying boxes, etc.
33 i34

So ... what is Counterexample
Guided Abstraction Refinement?

- Theorem Proving?
- Dataflow Analysis?
- Model Checking?

Verification by Theorem Proving

Example () {

1: dof{
lock() ;
old = new;
g = g->next;

1. Loop Invariants
2. Logical formula
3. Check Validity

2: if (g != NULL) {
3: g->data = new;

unlock () ;

new ++;

} Invariant:
4: } while(new != old);<::| lock A new = old
5: unlock ()
return; V

} = lock A new #old

Verification by Theorem Proving

Example () {

1: do{

lock() ;

old = new;

g = g->next;

if (g != NULL) {
g->data = new;
unlock () ;
new ++;

W N

}
4: } while(new != o0ld);
5: unlock ();
return;

1. Loop Invariants
2. Logical formula
3. Check Validity

- Loop Invariants

- Multithreaded Programs

+ Behaviors encoded in logic
+ Decision Procedures

Precise [ESC, PCC]

Verification by Program Analysis

Example () {
1: do{
lock(); @
old = new; @
q = g->next; @
2: if (g != NULL) {@

3: g->data = new; @

unlock () ;
new ++;
}
4: } while(new != o0ld);
5: unlock (); @
return;

1. Dataflow Facts
2. Constraint System
3. Solve constraints

- Imprecision due to fixed facts
+ Abstraction
+ Type/Flow Analyses

Scalable [CQUAL, ESP, MC]

Verification by Model Checking

Combining Strengths

Theorem Proving

Program Analysis
Example () { o s - Need loop invariants @ - Imprecise
1: do{l ‘o 1. (Finite State) Program (will find automatically) SLAM (will be precise)
oc! g cas + Behaviors encoded in logic Abstracti
old = new; 2. State Transition Graph (used to refine abstraction) ostraction
g = g->next; 3. Reachabilit + Theorem provers (will shrin N eT ate space
2: if (g != NULL){ : y (used to compute successors, we must explore)
3: g->data = new; refine abstraction)
unlock() ; Model Checking
} new - Pgm — Finite state model - Finite-state model, state explosion
4: } while(new != old); . (will find small good model)
5: unlock () - State exploswn + State Space Exploration
return; + State Exploration (used to get a path sensitive analysis)
b + Counterexamples + Counterexamples
(used to find relevant facts, refine abstraction)
Precise [SPIN, SMV, Bandera, JPF]
39 #40

e Project Due!

- Need help? Stop by my office or send email.

#41

