

Second-Order Type Systems

Upcoming Lectures

- We're now reaching the point where you have all of the tools and background to understand advanced topics.
- Upcoming Topics:
 - Automated Theorem Proving + Proof Checking
 - Model Checking
 - Software Model Checking
 - Types and Effects for Resource Management
 - Region-Based Memory Management
 - Object Calculi (OOP)

The Limitations of F₁

- In F₁ a function works exactly for one type
- Example: the identity function
 - id = λx : τ . x: $\tau \rightarrow \tau$
 - We need to write one version for each type
 - Worse: sort : $(\tau \to \tau \to bool) \to \tau$ array $\to unit$
- The various sorting functions differ only in typing
 - At runtime they perform exactly the same operations
 - We need different versions only to keep the type checker happy
- Two alternatives:
 - Circumvent the type system (see C, Java, ...), or
 - Use a more flexible type system that lets us write only one sorting function (but use it on many types of objs)

Cunning Plan

- Introduce Polymorphism (much vocab)
- It's Strong: Encode Stuff
- It's Too Strong: Restrict
 - Still too strong ... restrict more
- Final Answer:
 - Polymorphism works "as expect"
 - All the good stuff is handled
 - No tricky decideability problems

Polymorphism

- · Informal definition
 - A function is $\underline{\text{polymorphic}}$ if it can be applied to "many" types of arguments
- Various kinds of polymorphism depending on the definition of "many"
 - <u>subtype polymorphism</u> (aka bounded polymorphism)
 - "many" = all subtypes of a given type
 - ad-hoc polymorphism
 - "many" = depends on the function
 - choose behavior at runtime (depending on types, e.g. sizeof)
 - parametric *predicative* polymorphism
 - "many" = all monomorphic types
 - parametric impredicative polymorphism
 - "many" = all types

Parametric Polymorphism: Types as Parameters

- We introduce type variables and allow expressions to have variable types
- We introduce polymorphic types

 $\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t \mid \forall t. \ \tau$

 $e := x | \lambda x : \tau . e | e_1 e_2 | \Lambda t. e | e[\tau]$

- At. e is type abstraction (or generalization, "for all t")
- $e[\tau]$ is type application (or instantiation)
- Examples:

- id = Λt.λx:t. x

: $\forall t.t \rightarrow t$

- $id[int] = \lambda x:int. x$

: int \rightarrow int

- $id[bool] = \lambda x:bool. x$

: bool \rightarrow bool

- "id 5" is invalid. Use "id[int] 5" instead

.

Impredicative Typing Rules

• The typing rules:

$$\frac{x:\tau\ \text{in}\ \Gamma}{\Gamma\vdash x:\tau} \qquad \frac{\Gamma,x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda x:\tau.e:\tau\to\tau'}$$

$$\frac{\Gamma\vdash e_1:\tau\to\tau'\quad \Gamma\vdash e_2:\tau}{\Gamma\vdash e_1\;e_2:\tau'}$$

$$\frac{\Gamma\vdash e:\tau}{\Gamma\vdash \Lambda t.e:\forall t.\tau} \qquad t\ \text{does not occur in}\ \Gamma$$

$$\frac{\Gamma\vdash e:\forall t.\tau'}{\Gamma\vdash e[\tau]:[\tau/t]\tau'}$$

Impredicative Polymorphism

- Verify that "id[int] 5" has type int
- Note the <u>side-condition</u> in the rule for type abstraction
 - Prevents ill-formed terms like: λx:t.Λt.x
- The evaluation rules are just like those of F₁
 - This means that type abstraction and application are all performed at compile time (no run-time cost)
 - We do not evaluate under Λ ($\Lambda t.$ e is a value)
 - We do not have to operate on types at run-time
 - This is called <u>phase separation</u>: type checking is separate from execution

(Aside:) Parametricity or "Theorems for Free" (P. Wadler)

- Can prove properties of a term just from its type
- There is only one value of type $\forall t.t \rightarrow t$
 - The identity function
- There is no value of type ∀t.t
- Take the function reverse : $\forall t. \ t \ \text{List} \rightarrow t \ \text{List}$
 - This function cannot inspect the elements of the list
 - It can only produce a permutation of the original list
 - If $\rm L_1$ and $\rm L_2$ have the same length and let "match" be a function that compares two lists element-wise according to an arbitrary predicate
 - then "match L₁ L₂" ⇒ "match (reverse L₁) (reverse L₂)"!

Expressiveness of Impredicative Polymorphism

- This calculus is called
 - F₂
 - system F
 - second-order λ-calculus
 - polymorphic λ-calculus
- Polymorphism is extremely expressive
- We can encode many base and structured types in F₂

Encoding Base Types in F₂

- Booleans
 - bool = $\forall t.t \rightarrow t \rightarrow t$ (given any two things, select one)
 - There are exactly two values of this type!
 - true = $\Lambda t. \lambda x: t. \lambda y: t. x$
 - false = $\Lambda t. \lambda x:t. \lambda y:t. y$
 - not = λb :bool. $\Lambda t.\lambda x:t.\lambda y:t.$ b [t] y x
- Naturals
 - nat = $\forall t.$ $(t \to t) \to t \to t$ (given a successor and a zero element, compute a natural number)
 - $0 = \Lambda t. \ \lambda s:t \rightarrow t.\lambda z:t. \ z$
 - $n = \Lambda t. \ \lambda s:t \rightarrow t.\lambda z:t. \ s \ (s \ (s...s(n)))$
 - add = λ n:nat. λ m:nat. Λ t. λ s:t \rightarrow t. λ z:t. n [t] s (m [t] s z)
 - mul = λ n:nat. λ m:nat. Λ t. λ s:t \rightarrow t. λ z:t. n [t] (m [t] s) z

Expressiveness of F₂

- · We can encode similarly:
 - τ_1 + τ_2 as $\forall t. (\tau_1 \rightarrow t) \rightarrow (\tau_2 \rightarrow t) \rightarrow t$
 - $\tau_1 \times \tau_2$ as $\ \forall t. \ (\tau_1 \to \tau_2 \to t) \ \to t$
 - unit as $\forall t. \ t \rightarrow t$
- We cannot encode μt.τ
 - We can encode primitive recursion but not full recursion
 - All terms in F₂ have a termination proof in second-order Peano arithmetic (Girard, 1971)
 - This is the set of naturals defined using zero, successor, induction along with quantification both over naturals and over sets of naturals

#12

What's Wrong with F₂

- Simple syntax but very complicated semantics
 - id can be applied to itself: "id [$\forall t. t \rightarrow t$] id"
 - This can lead to paradoxical situations in a pure settheoretic interpretation of types
 - e.g., the meaning of id is a function whose domain contains a set (the meaning of $\forall t.t \rightarrow t$) that contains id!
 - This suggests that giving an interpretation to impredicative type abstraction is tricky
- Complicated termination proof (Girard)
- Type reconstruction (typeability) is undecidable
 - If the type application and abstraction are missing
- · How to fix it?
 - Restrict the use of polymorphism

Predicative Polymorphism

- Restriction: type variables can be instantiated only with monomorphic types
- This restriction can be expressed syntactically $\tau ::= b \mid \tau_1 \to \tau_2 \mid t \hspace{1cm} // \text{ monomorphic types}$ $\sigma ::= \tau \mid \forall t. \ \sigma \mid \sigma_1 \to \sigma_2 \hspace{1cm} // \text{ polymorphic types}$ $e ::= x \mid e_1 e_2 \mid \lambda x : \sigma. \ e \mid \Lambda t. e \mid e \mid \tau \mid$
 - Type application is restricted to mono types
 - Cannot apply "id" to itself anymore
- Same great typing rules
- Simple semantics and termination proof
- Type reconstruction still undecidable
- Must. Restrict. Further!

Prenex Predicative Polymorphism

- Restriction: polymorphic type constructor at *top*
- This restriction can also be expressed syntactically

```
\tau ::= b \mid \tau_1 \to \tau_2 \mid t
\sigma ::= \tau \mid \forall t. \ \sigma
```

 $e ::= x \mid e_1 e_2 \mid \lambda x : \tau. e \mid \Lambda t.e \mid e [\tau]$

- Type application is predicative
- Abstraction only on mono types
- The only occurrences of \forall are at the top level of a type $(\forall t.\ t \to t) \to (\forall t.\ t \to t)$ is <u>not</u> a valid type
- Same typing rules (less filling!)
- · Simple semantics and termination proof
- Decidable type inference!

Expressiveness of Prenex Predicative F₂

- We have simplified too much!
- Not expressive enough to encode nat, bool
 - But such encodings are only of theoretical interest anyway (cf. time wasting)
- Is it expressive enough in practice? Almost!
 - Cannot write something like

 $(\lambda s: \forall t.\tau. \dots s [nat] \times \dots s [bool] y)$

(At. ... code for sort)

- Formal argument s cannot be polymorphic

ML and the Amazing Polymorphic Let-Coat

- \bullet ML solution: slight extension of the predicative \boldsymbol{F}_2
 - Introduce "let x : $\sigma = e_1$ in e_2 "
 - With the semantics of " $(\lambda x : \sigma.e_2) e_1$ "
 - And typed as " $[e_1/x]$ e_2 " (result: "fresh each time")

$$\frac{\Gamma \vdash e_1 : \sigma \quad \Gamma, x : \sigma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{let} \; x : \sigma \; = e_1 \; \mathsf{in} \; e_2 : \tau}$$

• This lets us write the polymorphic sort as let

s :
$$\forall t.\tau$$
 = $\Lambda t.$... code for polymorphic sort ... in

... s [nat] x s [bool] y

• We have found the sweet spot!

ML and the Amazing Polymorphic Let-Coat

- ML solution: slight extension of the predicative F₂
 - Introduce "let x : $\sigma = e_1$ in e_2 "
 - With the semantics of " $(\lambda x : \sigma.e_2) e_1$ "
 - And typed as " $[e_1/x]$ e_2 " (result: "fresh each time")

$$\frac{\Gamma \vdash e_1 : \sigma \quad \Gamma, x : \sigma \vdash e_2 : \tau}{\Gamma \vdash \text{let } x : \sigma = e_1 \text{ in } e_2 : \tau}$$

• This lets us write the polymorphic sort as let

```
s: \forall t.\tau = \Lambda t. \dots code \ for \ polymorphic \ sort \dots in \dots \ s \ [nat] \ x \dots \dots s \ [bool] \ y
```

• Surprise: this was a major ML design flaw!

ML Polymorphism and References

- let is evaluated using call-by-value but is typed using call-by-name
 - What if there are side effects?
- Example:

```
let \dot{x}: \forall t. (t \rightarrow t) ref = \Lambda t.ref (\lambda x : t. x) in x [bool] := \lambda x: bool. not x; (! x [int]) 5
```

- Will apply "not" to 5
- Recall previous lectures: invariant typing of references
- Similar examples can be constructed with exceptions
- It took 10 years to find and agree on a clean solution

The Value Restriction in ML

• A type in a let is generalized *only for syntactic values*

$$\frac{\Gamma \vdash e_1 : \sigma \quad \Gamma, x : \sigma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{let} \; x : \sigma = e_1 \; \mathsf{in} \; e_2 : \tau} \quad \begin{array}{c} e_1 \; \; \mathsf{is} \; \; \mathsf{a} \; \; \mathsf{syntactic} \\ \mathsf{value} \quad \mathsf{or} \quad \sigma \quad \mathsf{is} \\ \mathsf{monomorphic} \end{array}$$

- Since e₁ is a value, its evaluation cannot have sideeffects
- In this case call-by-name and call-by-value are the same
- In the previous example ref (λx :t. x) is not a value
- This is not too restrictive in practice!

Subtype Bounded Polymorphism

We can <u>bound</u> the instances of a given type variable

 $\forall t < \tau, \sigma$

- Consider a function f : $\forall t < \tau. \ t \rightarrow \sigma$
- How is this different than $f':\tau\to\sigma$
- We can also invoke f' on any subtype of $\boldsymbol{\tau}$
- They are different if t appears in σ
- e.g, $f: \forall t < \tau.t \rightarrow t$ and $f: \tau \rightarrow \tau$
 - Take x : τ' < τ
- We have f [τ] x : τ '
- And f' x : τ
- We have lost information with f'

Homework

- Project Status Update Due
- Stick Around Next Lecture
- Upstairs in 228 (-ish)