

Introduction to Subtyping

- We can view types as denoting sets of values
- <u>Subtyping</u> is a relation between types induced by the subset relation between value sets
- Informal intuition:
 - If τ is a subtype of σ then any expression with type τ also has type σ (e.g., $\mathbb{Z} \subseteq \mathbb{R}$, $1 \in \mathbb{Z} \Rightarrow 1 \in \mathbb{R}$)
 - If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ
 - We write τ < σ to say that τ is a subtype of σ
 - Subtyping is reflexive and transitive

Plan For This Lecture

- Formalize Subtyping Requirements
 - Subsumption
- Create Safe Subtyping Rules
 - Pairs, functions, references, etc.
 - Most easy thing we try will be wrong
- Subtyping Coercions
 - When is a subtyping system correct?

Subtyping Examples

- FORTRAN introduced int < real
 5 + 1.5 is well-typed in many languages
- PASCAL had [1..10] < [0..15] < int
- Subtyping is a fundamental property of object-oriented languages
 - If S is a subclass of C then an instance of S can be used where an instance of C is expected
 - "subclassing \Rightarrow subtyping" philosophy

Example of Coherence

- We want the following subtyping relations:
 - int < real $\Rightarrow \lambda x \text{:int. toIEEE } x$
 - real < int $\Rightarrow \lambda x$:real. floor x
- For this system to be coherent we need
 - C(int, real) \circ C(real, int) = $\lambda x.x,$ and
 - C(real, int) \circ C(int, real) = $\lambda x.x$
- This requires that
 - $\forall x : real . (to IEEE (floor x) = x)$
 - which is not true

Building Conversions

• We start from conversions on basic types

 $\overline{\tau < \tau \Rightarrow \lambda x : \tau.x}$ $\frac{\tau_1 < \tau_2 \Rightarrow C(\tau_1, \tau_2) \quad \tau_2 < \tau_3 \Rightarrow C(\tau_2, \tau_3)}{\tau_1 < \tau_3 \Rightarrow C(\tau_2, \tau_3) \circ C(\tau_1, \tau_2)}$ $\tau_1 < \sigma_1 \Rightarrow C(\tau_1, \sigma_1) \quad \tau_2 < \sigma_2 \Rightarrow C(\tau_2, \sigma_2)$ $\tau_1 < \tau_2 < \sigma_1 \times \sigma_2 \Rightarrow \lambda x : \tau_1 \times \tau_2.(C(\tau_1, \sigma_1))(\texttt{fst}(x)), C(\tau_2, \sigma_2)(\texttt{snd}(x)))$ $\overline{\tau_1 \times \tau_2 < \tau_1 \Rightarrow \lambda x : \tau_1 \times \tau_2.\texttt{fst}(x)}$ $\sigma_1 < \tau_1 \Rightarrow C(\sigma_1, \tau_1) \quad \tau_2 < \sigma_2 \Rightarrow C(\tau_2, \sigma_2)$ $\tau_1 \rightarrow \tau_2 < \sigma_1 \rightarrow \sigma_2 \Rightarrow \lambda f : \tau_1 \rightarrow \tau_2.\lambda x : \sigma_1. C(\tau_2, \sigma_2)(f(C(\sigma_1, \tau_1)(x)))$

Comments

- With the conversion view we see why we do not necessarily want to impose antisymmetry for subtyping
 - Can have multiple representations of a type
 - We want to reserve type equality for representation equality
 - $\tau < \tau'$ and also $\tau' < \tau$ (are interconvertible) but not necessarily $\tau = \tau'$
- e.g., Modula-3 has packed and unpacked recordsWe'll encounter subtyping again for object
 - oriented languages
 - Serious difficulties there due to recursive types

Homework

- Homework #5 Due Today
- No Class Thursday
- Project Status Update Due Next Tuesday
- Double Class Next Tuesday (Meal?)