LIVE BY THE OPINIONG OF
E| | OTHERS 7 HA! NoT THIS
PUPPY! 1 GOT My OWN,
STANDARDS, DiG? T AM

iLL-ON INDIE
Fasr?

1I'M MY OWN
MAN, ‘NIQUE

Subtyping

Introduction to Subtyping

« We can view types as denoting sets of values

» Subtyping is a relation between types induced by
the subset relation between value sets

 Informal intuition:

- If t is a subtype of ¢ then any expression with type t also
has type ¢ (e.8., Z C R, 1€Z = 1€R)

- If © is a subtype of ¢ then any expression of type t can be
used in a context that expects a

- We write 1 < ¢ to say that t is a subtype of &

- Subtyping is reflexive and transitive

#3

Plan For This Lecture

» Formalize Subtyping Requirements
- Subsumption
 Create Safe Subtyping Rules
- Pairs, functions, references, etc.
- Most easy thing we try will be wrong
« Subtyping Coercions
- When is a subtyping system correct?

Subtyping Examples

o FORTRAN introduced int < real
- 5+ 1.5is well-typed in many languages

« PASCAL had [1..10] < [0..15] < int

« Subtyping is a fundamental property of
object-oriented languages

- If Siis a subclass of C then an instance of S can
be used where an instance of C is expected

- “subclassing = subtyping” philosophy

Subsumption

« Formalize the requirements on subtyping

« Rule of subsumption
- If © < o then an expression of type t has type ¢

NFe: T 7<0
NFe:o

« But now type safety may be in danger:
o If we say that int < (int — int)
« Then we can prove that “5 5” is well typed!

» There is a way to construct the subtyping relation to
preserve type safety

and PLDI 2005

* A simple typed
intermediate language
for object-oriented
languages

. foreign function calls
.« Essential language
support for generic
programming

* Permission-based
ownership

Subtyping in POPL

» Checking type safety of

» Semantic type qualifiers

« ... (out of space on slide)

47

Defining Subtyping

« The formal definition of subtyping is by derivation
rules for the judgment t < o

« We start with subtyping on the base types
- e.g. int<real or nat<int
- These rules are language dependent and are typically

based directly on types-as-sets arguments

* We then make subtyping a preorder (reflexive and

transitive)

T1 < T2 T2< T3

T<T T < T3

« Then we build-up subtyping for “larger” types

48

Subtyping for Pairs
<ol

X717 <oxao

« Show (informally) that whenever a s x s’ can be used, a
t x t’ can also be used:

» Consider the context H = H’[fst o] expecting a s x s’
« Then H’ expects a s
« Because t < s then H’ acceptsa t
e Take e : t x t’. Then fst e : t so it works in H’
o Thus e works in H
o The case of “snd e” is similar

-Try T <0

Subtyping for Records
» Several subtyping relations for records
1. Depth subtyping

{7, n, !,,:r,,}c{!l:T{._..,f.,,:r,’,

=
TP < T

« e.g., {f1 =int, f2 = int} < {f1 = real, f2 = int}
2. Width subtyping

n = m
{'r'l M T I" I Tn } < {Fl P TLae ey Im I Tm
E.g., {f1 = int, f2 = int} < {f2 = int}
Models subclassing in OO languages

3. Or, a combination of the two

)

}

Subtyping for Functions
' < o

rTo17 <o —0o

T O

Example Use:
rounded_sqrt ‘R—>Z
actual_sqrt R—-R
Since Z < R, rounded_sqrt < actual_sqrt
So if | have code like this:
float result = rounded_sqrt(5); // 2
... | can replace it like this:
float result = actual_sqrt(5); // 2.23
... and everything will be fine.

Subtyping for Functions

T< o < o - What do you
think of this

T>7 <00 e

‘ ‘ 2

= 01

= Paiid

= K [

= 4

Subtyping for Functions
' <o

ro1<o—o

« This rule is unsound
- LetI'=f:int — bool (and assume int < real)
- We show using the above rule that T' - f 5.0 : bool
- But this is wrong since 5.0 is not a valid argument of f

T O

int < real bool < bool

N f:int — bool int — bool < real — bool
M+ f:real — bool

N f5.0: bool

M+5.0:real

Correct Function Subtyping

o<T T"<J"
o<1

T=17<0o—0o
« We say that — is covariant in the result type and
contravariant in the argument type
« Informal correctness argument:
e Pickf:t— 17
« f expects an argument of type ©
« It also accepts an argument of type ¢ <t
« f returns a value of type t’
« Which can also be viewed as a ¢’ (since v’ < ¢”’)
« Hence f can be used as ¢ — ¢’

More on Contravariance

« Consider the subtype relationships:
int — real

real — real int — int

real — int

« In what sense (f € real — int) = (f € int — int) ?
« “real — int” has a larger domain!
« (recall the set theory (arg,result) pair encoding for functions)
« This suggests that “subtype-as-subset” interpretation is
not straightforward
« We’ll return to this issue (after these commercial messages ...)

Subtyping References

» Try covariance r<o

—_—— Wrong!
7T ref < o ref g

- Example: assume 1 < &
- The following holds (if we assume the above rule):
x:o,y:tref,f:t—intkFy:=x;f(ly)
- Unsound: f is called on a o but is defined only on t
- Java has covariant arrays!
« If we want covariance of references we can recover
type safety with a runtime check for each y := x
- The actual type of x matches the actual type of y
- But this is generally considered a bad design

Subtyping References (Part 2)

» Contravariance?
T O
oref < 1ref
- Example: assume t < ©
- The following holds (if we assume the above rule):
X:o,y:oref,f:t—intky:=x;f(ly)
- Unsound: f is called on a o but is defined only on t
» References are invariant

- No subtyping for references (unless we are prepared to
add run-time checks)

- hence, arrays should be invariant
- hence, mutable records should be invariant

Also Wrong!

Subtyping Recursive Types

Recall 7 list = pt.(unit + txt)

- We would like t list < o list whenever 1 < &
i ?

Covariance? r<o

pt.t < pt.o
» This is wrong if t occurs contravariantly in ¢
e Take t = put.t—int and o = pt.t—real
» Above rule says that t < o
* We have t~1—int and c~c—real
* 1<c would mean covariant function type!
« How can we get safe subtyping for lists?

Wrong!

Subtyping Recursive Types
t<s

Means assume t <s
and use that to

‘T<:O' prove t <o

pt. T < ps.o
« We add as an assumption that the type variables
stand for types with the desired subtype
relationship
- Before we assumed they stood for the same type!
« Verify that now subtyping works properly for lists
« There is no subtyping between ut.t—int and
ut.t—real (recall: T<o

e The correct rule

Conversion Interpretation

« The subset interpretation of types leads to an
abstract modeling of the operational behavior

- e.g., we say int < real even though an int could not
be directly used as a real in the concrete x86
implementation (cf. IEEE 754 bit patterns)

- The int needs to be converted to a real
» We can get closer to the “machine” with a
conversion interpretation of subtyping

- We say that © < o when there is a conversion function
that converts values of type t to values of type o

- Conversions also help explain issues such as
contravariance

pt.T < pt.o Wrong! - But: must be careful with conversions
#19 1201
Conversions Issues with Conversions
« Consider the expression “printreal 1” typed as follows:
° ExampleS: 1:int int < real
- nat < int with conversion Ax.x printreal : real — unit 1:real
- int < real with conversion 2’s comp — IEEE printreal 1 :unit
» The subset interpretation is a special case we convert 1 to real: printreal (C(int,real) 1)
when all conversions are identity functions » But we can also have another type derivation:
. . rintreal ! real — unit real — unit < int — unit
« Write “t < ¢ = C(r, 5)” to say that C(t,0) is P . - . .
. ; printreal | int — unit 1:int
the conversion function from subtype t to c printreal 1 : unit
- If C(x, o) is expressed in F, then C(t,06) : 1= o with conversion “(C(real -> unit, int -> unit) printreal) 1”
» Which one is right? What do they mean?
121 | 122 |

Introducing Conversions

« We can compile a language with subtyping into one
without subtyping by introducing conversions
» The process is similar to type checking
Tte:t=e
- Expression e has type t and its conversion is e
« Rules for the conversion process:
MFeyima—=17=e [Nkexim=ex

Mtepes:7=e1 60

Nlke:T=e 7<= C(r.0)
Mlce:o=C(reo)e

Coherence of Conversions

« Questions and Concerns:

- Can we build arbitrary subtype relations just because we
can write conversion functions?

- Is real < int just because the “floor” function is a
conversion?

- What is the conversion from “real—int” to “int—int”?
* What are the restrictions on conversion functions?
« A system of conversion functions is coherent if
whenever we have 1 < 1’ < ¢ then
«C(t, 1) = AX.X
* C(1,0) =C(t’, o) 0 C(r, 1) (= composed with)
« Example: if b is a bool then (float)b == (float)((int)b)
- otherwise we end up with confusing uses of subsumption

124 |

Example of Coherence

» We want the following subtyping relations:

- int < real = Ax:int. tolEEE x
- real < int = Ax:real. floor x
« For this system to be coherent we need
- C(int, real) o C(real, int) = Ax.Xx, and
- C(real, int) o C(int, real) = Ax.x
« This requires that
- ¥x:real . (tolEEE (floor x) = x)
- which is not true

Building Conversions

» We start from conversions on basic types

TET=Ar.T.x
n <= C(n,n) m<n=0(nn)
T < 73 = C(r2,73) 0 C(71,72)
n <oy =C(n,0) m <o = C(n,02)

T X T <oy Xop=> At %X (O, o £fst(2)). C(r, o) (snd(x)))
TIXTe < T = Ar T X T fst(x)

< T = Cloy,) T < o= C(r,0)
noam<o o= A1 = Ao Clr,e2) (F(C(o, 7){(x)))

Comments

« With the conversion view we see why we do not
necessarily want to impose antisymmetry for
subtyping

- Can have multiple representations of a type

- We want to reserve type equality for representation
equality

- t<1’ andalso 7’ < t (are interconvertible) but not
necessarily t = 7’

- e.g., Modula-3 has packed and unpacked records

« We’ll encounter subtyping again for object-
oriented languages

- Serious difficulties there due to recursive types

Homework

o Homework #5 Due Today

» No Class Thursday

 Project Status Update Due Next Tuesday
» Double Class Next Tuesday (Meal?)

