
1

#1

Class Survey Out Today

#2

SubtypingSubtyping

#3

Introduction to Subtyping

• We can view types as denoting sets of values
• Subtyping is a relation between types induced by

the subset relation between value sets
• Informal intuition:

– If τ is a subtype of σ then any expression with type τ also
has type σ (e.g., Z ⊆ R, 1∈Z ⇒ 1∈R)

– If τ is a subtype of σ then any expression of type τ can be
used in a context that expects a σ

– We write τ < σ to say that τ is a subtype of σ
– Subtyping is reflexive and transitive

#4

Plan For This Lecture

• Formalize Subtyping Requirements
– Subsumption

• Create Safe Subtyping Rules
– Pairs, functions, references, etc.
– Most easy thing we try will be wrong

• Subtyping Coercions
– When is a subtyping system correct?

#5

Subtyping Examples

• FORTRAN introduced int < real
– 5 + 1.5 is well-typed in many languages

• PASCAL had [1..10] < [0..15] < int

• Subtyping is a fundamental property of
object-oriented languages
– If S is a subclass of C then an instance of S can

be used where an instance of C is expected
– “subclassing ⇒ subtyping” philosophy

#6

Subsumption
• Formalize the requirements on subtyping
• Rule of subsumption

– If τ < σ then an expression of type τ has type σ

• But now type safety may be in danger:
• If we say that int < (int → int)
• Then we can prove that “5 5” is well typed!

• There is a way to construct the subtyping relation to
preserve type safety

2

#7

Subtyping in POPL
and PLDI 2005

• A simple typed
intermediate language
for object-oriented
languages

• Checking type safety of
foreign function calls

• Essential language
support for generic
programming

• Semantic type qualifiers
• Permission-based

ownership
• … (out of space on slide)

#8

Defining Subtyping

• The formal definition of subtyping is by derivation
rules for the judgment τ < σ

• We start with subtyping on the base types
– e.g. int < real or nat < int
– These rules are language dependent and are typically

based directly on types-as-sets arguments
• We then make subtyping a preorder (reflexive and

transitive)

• Then we build-up subtyping for “larger” types

#9

Subtyping for Pairs

• Try

• Show (informally) that whenever a s × s’ can be used, a
t × t’ can also be used:

• Consider the context H = H’[fst •] expecting a s × s’
• Then H’ expects a s
• Because t < s then H’ accepts a t
• Take e : t × t’. Then fst e : t so it works in H’
• Thus e works in H

• The case of “snd •” is similar

#10

Subtyping for Records
• Several subtyping relations for records
1. Depth subtyping

• e.g., {f1 = int, f2 = int} < {f1 = real, f2 = int}

2. Width subtyping

• E.g., {f1 = int, f2 = int} < {f2 = int}
• Models subclassing in OO languages

3. Or, a combination of the two

#11

Subtyping for Functions

Example Use:
rounded_sqrt : R → Z
actual_sqrt : R → R

Since Z < R, rounded_sqrt < actual_sqrt
So if I have code like this:

float result = rounded_sqrt(5); // 2
… I can replace it like this:

float result = actual_sqrt(5); // 2.23
… and everything will be fine.

#12

Subtyping for Functions
• What do you

think of this
rule?

3

#13

Subtyping for Functions

• This rule is unsound
– Let Γ = f : int → bool (and assume int < real)
– We show using the above rule that Γ ` f 5.0 : bool
– But this is wrong since 5.0 is not a valid argument of f

#14

Correct Function Subtyping

• We say that → is covariant in the result type and
contravariant in the argument type

• Informal correctness argument:
• Pick f : τ → τ’
• f expects an argument of type τ
• It also accepts an argument of type σ < τ
• f returns a value of type τ’
• Which can also be viewed as a σ’ (since τ’ < σ’)
• Hence f can be used as σ → σ’

#15

More on Contravariance
• Consider the subtype relationships:

int → real

real → int

real → real int → int

• In what sense (f ∈ real → int) ⇒ (f ∈ int → int) ?
• “real → int” has a larger domain!
• (recall the set theory (arg,result) pair encoding for functions)

• This suggests that “subtype-as-subset” interpretation is
not straightforward
• We’ll return to this issue (after these commercial messages …)

#16

Subtyping References
• Try covariance

– Example: assume τ < σ
– The following holds (if we assume the above rule):

x : σ, y : τ ref, f : τ → int ` y := x; f (! y)
– Unsound: f is called on a σ but is defined only on τ
– Java has covariant arrays!

• If we want covariance of references we can recover
type safety with a runtime check for each y := x
– The actual type of x matches the actual type of y
– But this is generally considered a bad design

#17

Subtyping References (Part 2)
• Contravariance?

– Example: assume τ < σ
– The following holds (if we assume the above rule):

x : σ, y : σ ref, f : τ → int ` y := x; f (! y)
– Unsound: f is called on a σ but is defined only on τ

• References are invariant
– No subtyping for references (unless we are prepared to

add run-time checks)
– hence, arrays should be invariant
– hence, mutable records should be invariant

#18

Subtyping Recursive Types

• Recall τ list = µt.(unit + τ×t)
– We would like τ list < σ list whenever τ < σ

• Covariance?

• This is wrong if t occurs contravariantly in τ
• Take τ = µt.t→int and σ = µt.t→real
• Above rule says that τ < σ
• We have τ'τ→int and σ'σ→real
• τ<σ would mean covariant function type!
• How can we get safe subtyping for lists?

4

#19

Subtyping Recursive Types

• The correct rule

• We add as an assumption that the type variables
stand for types with the desired subtype
relationship
– Before we assumed they stood for the same type!

• Verify that now subtyping works properly for lists
• There is no subtyping between µt.t→int and

µt.t→real (recall:

Means assume t < s
and use that to

prove τ < σ

#20

Conversion Interpretation
• The subset interpretation of types leads to an

abstract modeling of the operational behavior
– e.g., we say int < real even though an int could not

be directly used as a real in the concrete x86
implementation (cf. IEEE 754 bit patterns)

– The int needs to be converted to a real

• We can get closer to the “machine” with a
conversion interpretation of subtyping
– We say that τ < σ when there is a conversion function

that converts values of type τ to values of type σ
– Conversions also help explain issues such as

contravariance
– But: must be careful with conversions

#21

Conversions

• Examples:
– nat < int with conversion λx.x
– int < real with conversion 2’s comp → IEEE

• The subset interpretation is a special case
when all conversions are identity functions

• Write “τ < σ ⇒ C(τ, σ)” to say that C(τ,σ) is
the conversion function from subtype τ to σ
– If C(τ, σ) is expressed in F1 then C(τ,σ) : τ → σ

#22

Issues with Conversions
• Consider the expression “printreal 1” typed as follows:

we convert 1 to real: printreal (C(int,real) 1)
• But we can also have another type derivation:

with conversion “(C(real -> unit, int -> unit) printreal) 1”
• Which one is right? What do they mean?

#23

Introducing Conversions
• We can compile a language with subtyping into one

without subtyping by introducing conversions
• The process is similar to type checking

Γ ` e : τ ⇒ e
– Expression e has type τ and its conversion is e

• Rules for the conversion process:

#24

Coherence of Conversions
• Questions and Concerns:

– Can we build arbitrary subtype relations just because we
can write conversion functions?

– Is real < int just because the “floor” function is a
conversion?

– What is the conversion from “real→int” to “int→int”?

• What are the restrictions on conversion functions?
• A system of conversion functions is coherent if

whenever we have τ < τ’ < σ then
• C(τ, τ) = λx.x
• C(τ,σ) = C(τ’, σ) C(τ, τ’) (= composed with)
• Example: if b is a bool then (float)b == (float)((int)b)

– otherwise we end up with confusing uses of subsumption

5

#25

Example of Coherence
• We want the following subtyping relations:

– int < real ⇒ λx:int. toIEEE x
– real < int ⇒ λx:real. floor x

• For this system to be coherent we need
– C(int, real) C(real, int) = λx.x, and
– C(real, int) C(int, real) = λx.x

• This requires that
– ∀x : real . (toIEEE (floor x) = x)
– which is not true

#26

Building Conversions
• We start from conversions on basic types

#27

Comments
• With the conversion view we see why we do not

necessarily want to impose antisymmetry for
subtyping
– Can have multiple representations of a type
– We want to reserve type equality for representation

equality
– τ < τ’ and also τ’ < τ (are interconvertible) but not

necessarily τ = τ’
– e.g., Modula-3 has packed and unpacked records

• We’ll encounter subtyping again for object-
oriented languages
– Serious difficulties there due to recursive types

#28

Homework

• Homework #5 Due Today
• No Class Thursday
• Project Status Update Due Next Tuesday
• Double Class Next Tuesday (Meal?)

