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#1

Type Systems For: Type Systems For: 
Exceptions,Exceptions,

Continuations,Continuations,
and Recursive Typesand Recursive Types

#2

Exceptions
• A mechanism that allows non-local control flow

– Useful for implementing the propagation of errors to 
caller

• Exceptions ensure* that errors are not ignored
– Compare with the manual error handling in C

• Languages with exceptions:
– C++, ML, Modula-3, Java, C#, …

• We assume that there is a special type exn of 
exceptions
– exn could be int to model error codes
– In Java or C++, exn is a special object types * Supposedly.

#3

Modeling Exceptions
• Syntax

e ::= ... | raise e | try e1 handle x ⇒ e2
τ ::= ... | exn

• We ignore here how exception values are created
– In examples we will use integers as exception values

• The handler binds x in e2 to the actual exception 
value

• The “raise” expression never returns to the 
immediately enclosing context
– 1 + raise 2 is well-typed
– if (raise 2) then 1 else 2 is also well-typed
– (raise 2) 5 is also well-typed
– What should be the type of raise? 

#4

Example with Exceptions

• A (strange) factorial function
let f = λx:int.λres:int. if x = 0 then 

raise res 
else 

f (x - 1) (res * x)
in  try f 5 1 handle x ⇒ x

• The function returns in one step from the 
recursion

• The top-level handler catches the exception 
and turns it into a regular result

#5

Typing Exceptions
• New typing rules

• A raise expression has an arbitrary type
• This is a clear sign that the expression does not return to its 

evaluation context

• The type of the body of try and of the handler must 
match
• Just like for conditionals

#6

Dynamics of Exceptions

• The result of evaluation can be an uncaught 
exception
– Evaluation answers:    a ::= v | uncaught v
– “uncaught v” has an arbitrary type

• Raising an exception has global effects
• It is convenient to use contextual semantics

– Exceptions propagate through some contexts but 
not through others

– We distinguish the handling contexts that 
intercept exceptions (this will be new)
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#7

Contexts for Exceptions
• Contexts

– H :: = • | H e | v H | raise H | try H handle x ⇒ e

• Propagating contexts
– Contexts that propagate exceptions to their own 

enclosing contexts
– P ::= • | P e | v P | raise P

• Decomposition theorem
– If e is not a value and e is well-typed then it can be 

decomposed in exactly one of the following ways:
• H[(λx:τ. e) v] (normal lambda calculus)
• H[try v handle x ⇒ e] (handle it or not)
• H[try P[raise v] handle x ⇒ e] (propagate!)
• P[raise v] (uncaught exception)

#8

Contextual Semantics for 
Exceptions

• Small-step reduction rules
H[(λx:τ. e) v]                       → H[[v/x] e]
H[try v handle x ⇒ e]         → H[v]
H[try P[raise v] handle x ⇒ e] → H[[v/x] e]
P[raise v]                            → uncaught v

• The handler is ignored if the body of try 
completes normally

• A raised exception propagates (in one step) 
to the closest enclosing handler or to the top 
of the program

#9

Exceptional Commentary

• The addition of exceptions preserves type 
soundness

• Exceptions are like non-local goto
• However, they cannot be used to implement 

recursion
– Thus we still cannot write (well-typed) non-

terminating programs

• There are a number of ways to implement 
exceptions (e.g., “zero-cost” exceptions)

#10

Continuations

• Some languages have a mechanism for taking a snapshot of 
the execution and storing it for later use
– Later the execution can be reinstated from the snapshot
– Useful for implementing threads, for example
– Examples: Scheme, LISP, ML, C (yes, really!)

• Consider the expression: e1 + e2 in a context C
– How to express a snapshot of the execution right after evaluating e1

but before evaluating e2 and the rest of C ?
– Idea: as a context C1 = C [ • + e2 ]

• Alternatively, as λx
1
. C [ x

1
+ e

2
]

– When we finish evaluating e1 to v
1
, we fill the context and continue 

with C[v
1

+ e
2
]

– But the C1 continuation is still available and we can continue several 
times, with different replacements for e1

#11

Continuation Uses in “Real Life”
• You’re walking and come to a fork in the road
• You save a continuation “right” for going right
• But you go left (with the “right” continuation in hand)
• You encounter Bender. Bender coerces you into joining his 

computer dating service. 
• You save a continuation “bad-date” for going on the date.
• You decide to invoke the 

“right” continuation
• So, you go right (no evil date 

obligation, but with the “bad-
date” continuation in hand)

• A train hits you! 
• On your last breath, you invoke 

the “bad-date” continuation

#12

Continuations
• Syntax: 

e ::= callcc k in e  | throw e1 e2
τ ::= … | τ cont

• τ cont - the type of a continuation that expects a τ
• callcc k in e - sets k to the current context of the 

execution and then evaluates expression e
– when e terminates, the whole callcc terminates
– e can invoke the saved continuation (many times even)
– when e invokes k it is as if “callcc k in e” returns
– k is bound in e

• throw e1 e2 - evaluates e1 to a continuation, e2 to a 
value and invokes the continuation with the value 
of e2     (just wait, we’ll explain it!)
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#13

Example with Continuations
• Example: another strange factorial
callcc k in 

let f = λx:int.λres:int. if x = 0 then throw k res 
else f (x - 1) (x * res)

in f 5 1
• First we save the current context

– This is the top-level context
– A throw to k of value v means “pretend the whole callcc

evaluates to v”
• This simulates exceptions
• Continuations are strictly more powerful that 

exceptions 
– The destination is not tied to the call stack

#14

Static Semantics of Continuations

• Note that the result of callcc is of type τ
“callcc k in e” returns in two possible situations
1. e throws to k a value of type τ, or
2. e terminates normally with a value of type τ

• Note that throw has any type τ’
– Since it never returns to its enclosing context

#15

Dynamic Semantics of 
Continuations

• Use contextual semantics (wow, again!)
– Contexts are now manipulated directly
– Contexts are values of type τ cont

• Contexts
H ::= • | H e | v H | throw H1 e2 | throw v1 H2

• Evaluation rules
– H[(λx.e) v] → H[[v/x] e]
– H[callcc k in e] → H[[H/k] e]
– H[throw H1 v2] → H1[v2]

• callcc duplicates the current continuation
• Note that throw abandons its own context

#16

Implementing Coroutines with 
Continuations

• Example: 
let client = λk. let res = callcc k’ in throw k k’ in

print (fst res);
client (snd res)

– “client k” will invoke “k” to get an integer and a continuation for 
obtaining more integers (for now, assume the list & recursion work)

let getnext = 
λL.λk. if L = nil then raise 999

else getnext (cdr L) (callcc k’ in throw k  (car L, k’))
– “getnext L k” will send to “k” the first element of L along with a 

continuation that can be used to get more elements of L 

getnext [0;1;2;3;4;5] (callcc k in client k)

#17

Continuation Comments
• In our semantics the continuation saves the entire 

context: program counter, local variables, call 
stack, and the heap!

• In actual implementations the heap is not saved!
• Saving the stack is done with various tricks, but it 

is expensive in general
• Few languages implement continuations

– Because their presence complicates the whole compiler 
considerably

– Unless you use a continuation-passing-style of 
compilation (more on this next)

#18

Continuation Passing Style
• A style of compilation where evaluation of a 

function never returns directly: instead the 
function is given a continuation to invoke with its 
result. 

• Instead of  f(int a) { return h(g(e); } 
• we write f(int a, cont k) { g(e, λr. h(r, k) ) }
• Advantages:

– interesting compilation scheme (supports callcc easily)
– no need for a stack, can have multiple return addresses 

(e.g., for an error case)
– fast and safe (non-preemptive) multithreading
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#19

Continuation Passing Style
• Let e ::= x | n | e1 + e2 | if e1 then e2 else e3

| λx.e | e1 e2
• Define cps(e, k) as the code that computes e in 

CPS and passes the result to continuation k
cps(x, k) = k x
cps(n, k) = k n
cps(e1 + e2, k) = 

cps(e1, λn1.cps(e2,λn2.k (n1 + n2)))
cps(λx.e, k) = k (λxλk’. cps(e,k’))
cps(e1 e2, k) = cps(e1, λf1.cps(e2,λv2. f1 v2 k))

• Example: cps (h(g(5)), k) = g(5, λx.h x k)
– Notice the order of evaluation being explicit

#20

Recursive Types: Lists
• We want to define recursive data structures
• Example: lists

– A list of elements of type τ (a τ list) is either empty or it 
is a pair of a τ and a τ list

τ list = unit + (τ × τ list)
– This is a recursive equation. We take its solution to be  

the smallest set of values L that satisfies the equation
L = { * } ∪ (T × L)  

where T is the set of values of type τ

– Another interpretation is that the recursive equation is 
taken up-to (modulo) set isomorphism

#21

Recursive Types
• We introduce a recursive type constructor µ (“mu”):

µt. τ
– The type variable t is bound in τ
– This stands for the solution to the equation

t ' τ     (t is isomorphic with τ)
– Example: τ list = µt. (unit + τ × t)
– This also allows “unnamed” recursive types

• We introduce syntactic (sugary) operations for the 
conversion between µt.τ and [µt.τ/t]τ

• e.g. between “τ list” and “unit + (τ × τ list)”
e ::= … | foldµt.τ e | unfoldµt.τ e 
τ ::= … | t | µt.τ

#22

Example with Recursive Types
• Lists

τ list = µt. (unit + τ × t)
nilτ = foldτ list (injl *)
consτ = λx:τ.λL:τ list. foldτ list injr (x, L)

• A list length function
lengthτ = λL:τ list. 

case (unfoldτ list L) of   injl x ⇒ 0
| injr y ⇒ 1 + lengthτ (snd y)

• (At home …) Verify that
– nilτ : τ list
– consτ : τ → τ list → τ list
– lengthτ : τ list → int

#23

Type Rules for Recursive Types

• The typing rules are syntax directed
• Often, for syntactic simplicity, the fold and 

unfold operators are omitted
– This makes type checking somewhat harder

#24

Dynamics of Recursive Types
• We add a new form of values

v ::= … | foldµt.τ v
– The purpose of fold is to ensure that the value 

has the recursive type and not its unfolding

• The evaluation rules:

• The folding annotations are for type checking only
• They can be dropped after type checking
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#25

Recursive Types in ML
• The language ML uses a simple syntactic trick to 

avoid having to write the explicit fold and unfold
• In ML recursive types are bundled with union types

type t = C1 of τ1 | C2 of τ2 | ... | Cn of τn (* t can 
appear in τi *)

– e.g., “type intlist = Nil of unit | Cons of int * intlist”

• When the programmer writes Cons (5, l)
– the compiler treats it as              foldintlist (injlr (5, l))

• When the programmer writes
– case e of Nil ⇒ ... | Cons (h, t) ⇒ ... 
the compiler treats it as
– case unfoldintlist e of Nil ⇒ ... | Cons (h,t) ⇒ ...

#26

Encoding Call-by-Value 
λ-calculus in F1

µ

• So far, F1 was so weak that we could not 
encode non-terminating computations
– Cannot encode recursion
– Cannot write the λx.x x   (self-application)

• The addition of recursive types makes typed 
λ-calculus as expressive as untyped λ-
calculus!

• We could show a conversion algorithm from 
call-by-value untyped λ-calculus to call-by-
value F1

µ

#27

Untyped Programming in F1
µ

• We write e for the conversion of the term e to F1
µ

– The type of e is V = µt. t → t
• The conversion rules

x = x
λx. e = foldV (λx:V. e)
e1 e2 = (unfoldV e1) e2

• Verify that 
1. · ` e : V
2. e ⇓ v if and only if e ⇓ v

• We can express non-terminating computation
D = (unfoldV (foldV (λx:V. (unfoldV x) x))) (foldV (λx:V. (unfoldV x) x)))
or, equivalently
D = (λx:V. (unfoldV x) x) (foldV (λx:V. (unfoldV x) x)))

#28

Homework

• Read Goodenough article
– Optional, perspectives on exceptions

• Work on Homework 5!
• Work on your projects!

– Status Update Due Soon


