Type Systems For:
Exceptions,
Continuations,
and Recursive Types

T THmik, THE SHORT CONCERMED, [WY TWE 1S YALURBIE. T
ATTENTICH, SPAR OF UG AR
TELEYVSION 1S GREAT, oS

Exceptions

A mechanism that allows non-local control flow

- Useful for implementing the propagation of errors to
caller

Exceptions ensure* that errors are not ignored
- Compare with the manual error handling in C
« Languages with exceptions:
- C++, ML, Modula-3, Java, C#, ...
« We assume that there is a special type exn of
exceptions
- exn could be int to model error codes
- In Java or C++, exn is a special object types * Supposedly.

#2

Modeling Exceptions

« Syntax
e:=... | raisee | trye, handlex = e,
Ti=...] exn
« We ignore here how exception values are created
- In examples we will use integers as exception values
The handler binds x in e, to the actual exception
value
« The “raise” expression never returns to the
immediately enclosing context
- 1 + raise 2 is well-typed
- if (raise 2) then 1 else 2 is also well-typed
- (raise 2) 5 is also well-typed
- What should be the type of raise?

#3

Example with Exceptions

« A (strange) factorial function
let f = Ax:int.Ares:int. if x = 0 then
raise res
else
f(x-1)(res*x)
in try f 51 handle x = x
 The function returns in one step from the
recursion
» The top-level handler catches the exception
and turns it into a regular result

Typing Exceptions

» New typing rules
Fe:exn

[+ raisee: T

NFer:7 ,ziexnbkex:T

M- trye; handle s == ep : T

« A raise expression has an arbitrary type
« This is a clear sign that the expression does not return to its
evaluation context
« The type of the body of try and of the handler must
match
« Just like for conditionals

Dynamics of Exceptions

 The result of evaluation can be an uncaught
exception
- Evaluation answers: a ::=v | uncaught v
- “uncaught v” has an arbitrary type
« Raising an exception has global effects
« It is convenient to use contextual semantics
- Exceptions propagate through some contexts but
not through others
- We distinguish the handling contexts that
intercept exceptions (this will be new)

Contexts for Exceptions
o Contexts
-H::=e|He|VvH | raiseH | try Hhandle x = e
» Propagating contexts
- Contexts that propagate exceptions to their own
enclosing contexts
-P::=e|Pe| VP | raise P
» Decomposition theorem
- If e is not a value and e is well-typed then it can be
decomposed in exactly one of the following ways:
e H[(Ax:t. e) V] (normal lambda calculus)
« H[try v handle x = €] (handle it or not)
« H[try P[raise v] handle x = €] (propagate!)
« P[raise v] (uncaught exception)

47

Contextual Semantics for

Exceptions

» Small-step reduction rules
H[(Ax:t. €) V]
H[try v handle x = €]
H[try P[raise v] handle x = €] — H[[v/X] €]
P[raise v] — uncaught v
« The handler is ignored if the body of try
completes normally
« A raised exception propagates (in one step)
to the closest enclosing handler or to the top
of the program

— H[[v/X] €]
— H[v]

Exceptional Commentary

» The addition of exceptions preserves type
soundness

» Exceptions are like non-local goto

» However, they cannot be used to implement
recursion
- Thus we still cannot write (well-typed) non-

terminating programs

» There are a number of ways to implement

exceptions (e.g., “zero-cost” exceptions)

Continuations

» Some languages have a mechanism for taking a snapshot of
the execution and storing it for later use
- Later the execution can be reinstated from the snapshot
- Useful for implementing threads, for example
- Examples: Scheme, LISP, ML, C (yes, really!)
» Consider the expression: e, + e, in a context C
How to express a snapshot of the execution right after evaluating e,
but before evaluating e, and the rest of C?
- Idea: asacontext C,=C[e+e,]
« Alternatively, as /x C[X, +e 1
- When we finish evaluatlng e1 to v , we fill the context and continue
with C[v +te]
- But the C1 contmuation is still available and we can continue several
times, with different replacements for e,

Continuation Uses in “Real Life”

« You’re walking and come to a fork in the road
« You save a continuation “right” for going right
e But you go left (with the “right” continuation in hand)

* You encounter Bender. Bender coerces you into joining his
computer dating service.

* You save a continuation “bad-date” for going on the date.

» You decide to invoke the
“right” continuation

» So, you go right (no evil date
obligation, but with the “bad-
date” continuation in hand)

« A train hits you!

« On your last breath, you invoke
the “bad-date” continuation

/" BEnDer's
COMPUTER
DATING
SeRVice

DISCREET
AND
eTe

Continuations
o Syntax:
e::=callcckine | throwe; e,
T:i:=..| tcont

« 1 cont - the type of a continuation that expects a t
o callcc kin e - sets k to the current context of the
execution and then evaluates expression e
- when e terminates, the whole callcc terminates
- e can invoke the saved continuation (many times even)
- when e invokes k it is as if “callcc k in e” returns
- kisboundine
« throw e, e, - evaluates e, to a continuation, e, to a
value and invokes the continuation with the value
of e, (just wait, we’ll explain it!)

Example with Continuations

« Example: another strange factorial
callcc k in
let f = Ax:int.Ares:int. if x = 0 then throw k res
else f (x - 1) (x * res)
inf51
« First we save the current context
- This is the top-level context
- A throw to k of value v means “pretend the whole callcc
evaluates to v”
« This simulates exceptions
« Continuations are strictly more powerful that
exceptions
- The destination is not tied to the call stack

Static Semantics of Continuations
MNk:7Tconthke:T
M+ calleckine: T
M-es:T
[+ throwey e : 7/

« Note that the result of callcc is of type t
“callcc k in e” returns in two possible situations
1. e throws to k a value of type t, or
2. e terminates normally with a value of type t

» Note that throw has any type 1’
- Since it never returns to its enclosing context

[+ ey :7cont

Dynamic Semantics of
Continuations

Use contextual semantics (wow, again!)
- Contexts are now manipulated directly
- Contexts are values of type t cont
« Contexts
H::=e | He | vH | throw H, e, | throw v, H,
o Evaluation rules
- H[(Ax.e) v]
- H[callcc k in e] — H[[H/K] e]
- H[throw H, v,] — H,[v,]
callcc duplicates the current continuation
« Note that throw abandons its own context

— H[[v/x] e]

Implementing Coroutines with

Continuations

« Example:

let client = 2k. let res = callcc k’ in throw k k’ in
print (fst res);
client (snd res)

- “client k” will invoke “k” to get an integer and a continuation for
obtaining more integers (for now, assume the list & recursion work)

let getnext =
AL.ak. if L = nil then raise 999
else getnext (cdr L) (callcc k’ in throw k (car L, k’))

- “getnext L k” will send to “k” the first element of L along with a
continuation that can be used to get more elements of L

getnext [0;1;2;3;4;5] (callcc k in client k)

Continuation Comments
In our semantics the continuation saves the entire
context: program counter, local variables, call
stack, and the heap!
In actual implementations the heap is not saved!
» Saving the stack is done with various tricks, but it
is expensive in general
Few languages implement continuations
- Because their presence complicates the whole compiler
considerably
- Unless you use a continuation-passing-style of
compilation (more on this next)

Continuation Passing Style

A style of compilation where evaluation of a
function never returns directly: instead the
function is given a continuation to invoke with its
result.

 Instead of f(int @) { return h(g(e); }
* we write f(int a, cont k) { g(e, Ar. h(r, k))}
« Advantages:

- interesting compilation scheme (supports callcc easily)

- no need for a stack, can have multiple return addresses
(e.g., for an error case)

- fast and safe (non-preemptive) multithreading

Continuation Passing Style
e Lete:i:=x|n|e +e,|ife thene,elsee;
| Ax.e | e, &

« Define cps(e, k) as the code that computes e in
CPS and passes the result to continuation k

cps(x, k) = k x
cps(n, k) =kn
cps(e; + e, k) =
cps(eq, Ang.cps(e;,An,.k (ng +ny)))
cps(ix.e, k) = k (Axrk’. cps(e,k’))
cps(e; e,, k) = cps(ey, Afy.cps(e;,hv,. i v, K))
« Example: cps (h(g(5)), k) = g(5, Ax.h x k)

- Notice the order of evaluation being explicit

Recursive Types: Lists

« We want to define recursive data structures

o Example: lists

- A list of elements of type t (a t list) is either empty or it

is a pair of a t and a t list
< list = unit + (¢t x 7 list)

- This is a recursive equation. We take its solution to be

the smallest set of values L that satisfies the equation
L={*}u(TxL)
where T is the set of values of type t

- Another interpretation is that the recursive equation is

taken up-to (modulo) set isomorphism

219 20}
Recursive Types Example with Recursive Types
« We introduce a recursive type constructor p (“mu”): e Lists
“t- T 7 list = pt. (unit + 1 x t)
- The type variable t is bound in © nil, = fold, ;s (injl *)
- This stands for the solution to the equation cons, = Ax:t.AL:xt list. fold, i, injr (x, L)
t~t (tisisomorphic with t) A list length function
- Example: 7 list = pt. (unit + © x t) length, = AL:t list.
- This also allows “unnamed” recursive types case (unfold, ;, L) of injlx =0
+ We introduce syntactic (sugary) operations for the | injry = 1 + length_ (snd y)
conversion between ut.t and [ut.t/t]t At h Verify that "
» e.g. between “t list” and “unit + (t x 1 list)” * home '"). erty tha
e:= | fold,,.e | unfold , . e -l colist
o ut. ut. - cons, :t—tlist— tlist
TS | t]pte - length_ : 1 list — int
21} 22}

Type Rules for Recursive Types
Mke: ptr

" unfoldy.; e : [ut.T/t]T

ke [ut.r/t]r
[k foldysre: pt.t
» The typing rules are syntax directed

» Often, for syntactic simplicity, the fold and
unfold operators are omitted
- This makes type checking somewhat harder

Dynamics of Recursive Types

« We add a new form of values
vi=.. | fold v
- The purpose of fold is to ensure that the value
has the recursive type and not its unfolding

e The evaluation rules:
elv el foldyrr v

unfold,;r e v

« The folding annotations are for type checking only
« They can be dropped after type checking

Recursive Types in ML
The language ML uses a simple syntactic trick to
avoid having to write the explicit fold and unfold
In ML recursive types are bundled with union types
typet=C;of 7, | C,of 7, | ... | C of 1, (*tcan
appear in t;*)
- e.g., “type intlist = Nil of unit | Cons of int * intlist”
When the programmer writes Cons (5, |)
- the compiler treats it as fold;puise (injlr (5, 1))
When the programmer writes

- case e of Nil= ... | Cons (h, t) = ...
the compiler treats it as
- case unfold;,y € of Nil = ... | Cons (h,t) = ...

Encoding Call-by-Value

A-calculus in F*

« So far, F, was so weak that we could not
encode non-terminating computations
- Cannot encode recursion
- Cannot write the Ax.x x (self-application)

» The addition of recursive types makes typed
A-calculus as expressive as untyped A-
calculus!

« We could show a conversion algorithm from
call-by-value untyped A-calculus to call-by-
value F#

Untyped Programming in F*

We write e for the conversion of the term e to F#
- ThetypeofeisV=pt. t >t

The conversion rules

X =X

ax. e = foldy (Ax:V. e)

€€, = (unfoldye,) e,

Verify that

1. -Fe:V

2.elvifandonlyifely

We can express non-terminating computation

D = (unfold, (foldy, (Ax:V. (unfold, x) x))) (fold, (Ax:V. (unfold, x) x)))

or, equivalently
D = (Ax:V. (unfoldy x) x) (fold, (2x:V. (unfoldy x) x)))

Homework

» Read Goodenough article

- Optional, perspectives on exceptions
» Work on Homework 5!
» Work on your projects!

- Status Update Due Soon

