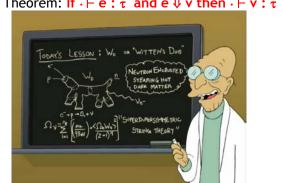
Monomorphic Type Systems

Type Soundness for F₁

- Theorem: If $\cdot \vdash e : \tau$ and $e \lor v$ then $\cdot \vdash v : \tau$
 - Also called, <u>subject reduction</u> theorem, <u>type</u> preservation theorem
- This is one of the most important sorts of theorems in PL
- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...

How Might We Prove It?

• Theorem: If $\cdot \vdash e : \tau$ and $e \lor v$ then $\cdot \vdash v : \tau$



Proof Approaches To Type Safety

- Theorem: If $\cdot \vdash e : \tau$ and $e \lor v$ then $\cdot \vdash v : \tau$
- Try to prove by induction on e
 - Won't work because $[v_2/x]e_1$ in the evaluation of e_1 e_2
 - Same problem with induction on $\cdot \vdash e : \tau$
- Try to prove by induction on τ
 - Won't work because e_1 has a "bigger" type than e_1 e_2
- Try to prove by induction on e [↓] v
 - To address the issue of $[v_2/x]e_1'$
 - This is it!

Type Soundness Proof

• Consider the function application case

$$\mathcal{E} :: \frac{e_1 \Downarrow \lambda x : \tau_2.e_1' \quad e_2 \Downarrow v_2 \quad [v_2/x]e_1' \Downarrow v}{e_1 \ e_2 \Downarrow v}$$

and by inversion on the derivation of $c_1 \ c_2$: au

$$\mathcal{D} :: \frac{\cdot \vdash e_1 : \tau_2 \longrightarrow \tau \quad \cdot \vdash e_2 : \tau_2}{\cdot \vdash e_1 \; e_2 : \tau}$$

- From IH on $e_1 \Downarrow ...$ we have \cdot , $x : \tau_2 \vdash e_1' : \tau$ From IH on $e_2 \Downarrow ...$ we have $\cdot \vdash v_2 : \tau_2$
- Need to infer that $\cdot \vdash [v_2/x]e_1$ ': τ and use the IH We need a substitution lemma (by induction on e₁')

Significance of Type Soundness

- The theorem says that the result of an evaluation has the same type as the initial expression
- The theorem does not say that
 - The evaluation never gets stuck (e.g., trying to apply a non-function, to add non-integers, etc.), nor that
 - The evaluation terminates
- Even though both of the above facts are true of F₁
- We need a small-step semantics to prove that the execution never gets stuck
- I Assert: the execution always terminates in F₁
 - When does the base lambda calculus ever not terminate?

Small-Step Contextual Semantics for F_1

• We define redexes

$$r ::= n_1 + n_2 \mid \text{ if b then } e_1 \text{ else } e_2 \mid (\lambda x : \tau. e_1) v_2$$

and contexts

 $H::=H_1+e_2\mid n_1+H_2\mid$ if H then e_1 else $e_2\mid H_1$ $e_2\mid (\lambda x;\tau.\ e_1)\ H_2\mid \bullet$

and local reduction rules

 $\begin{array}{lll} n_1 + n_2 & & \rightarrow n_1 \text{ plus } n_2 \\ \text{if true then } e_1 \text{ else } e_2 & & \rightarrow e_1 \\ \text{if false then } e_1 \text{ else } e_2 & & \rightarrow e_2 \\ (\lambda x; \tau. \ e_1) \ v_2 & & \rightarrow [v_2/x]e_1 \end{array}$

• and one global reduction rule

$$H[r] \rightarrow H[e]$$
 iff $r \rightarrow e$

Decomposition Lemmas for F₁

- 1. If $\cdot \vdash e : \tau$ and e is not a (final) value then there exist (unique) H and r such that e = H[r]
 - any well typed expression can be decomposed
 - any well-typed non-value can make progress
- 2. Furthermore, there exists τ' such that $\cdot \vdash r : \tau'$
 - the redex is closed and well typed
- 3. Furthermore, there exists e' such that $r \to e'$ and \cdot \vdash e' : τ'
 - local reduction is type preserving
- 4. Furthermore, for any $e',\,\cdot \vdash e':\tau'$ implies $\,\cdot \vdash H[e']:\tau$
 - the expression preserves its type if we replace the redex with an expression of same type

Type Safety of F₁

- Type preservation theorem
 - If \vdash e : τ and e \rightarrow e' then \vdash e' : τ
 - Follows from the decomposition lemma
- · Progress theorem
 - If $\cdot \vdash e : \tau$ and e is not a value then there exists e' such that e can make progress: $e \to e'$
- Progress theorem says that execution can make progress on a well typed expression
- From type preservation we know the execution of well typed expressions never gets stuck
 - This is a (very!) common way to state and prove type safety of a language

What's Next?

- We've got the basic simply-typed monomorphic lambda calculus
- Now let's make it more complicated ...
- · By adding features!

Product Types: Static Semantics

• Extend the syntax with (binary) tuples

$$\begin{array}{lll} e & ::= \dots \mid (e_1,\,e_2) \mid \mathsf{fst}\; e \mid \mathsf{snd}\; e \\ \tau & ::= \dots \mid \tau_1 \times \tau_2 \end{array}$$

- This language is sometimes called F_1^{\times}
- Same typing judgment $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathsf{fst} \ e : \tau_1} \quad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathsf{snd} \ e : \tau_2}$$

Dynamic Semantics and Soundness

- New form of values: $V ::= ... \mid (V_1, V_2)$
- New (big step) evaluation rules:

$$\frac{e_1 \downarrow v_1 \quad e_2 \downarrow v_2}{(e_1, e_2) \downarrow (v_1, v_2)}$$

$$\frac{e \downarrow (v_1, v_2)}{\text{fst } e \downarrow v_1} \quad \frac{e \downarrow (v_1, v_2)}{\text{snd } e \downarrow v_2}$$

- New contexts: $H ::= ... \mid (H_1, e_2) \mid (v_1, H_2) \mid fst \ H \mid snd \ H$
- · New redexes:

$$\begin{array}{c} \text{fst } (v_1,\,v_2) \rightarrow v_1 \\ \text{snd } (v_1,\,v_2) \rightarrow v_2 \end{array}$$

• Type soundness holds just as before

#12

General PL Feature Plan

- The general plan for language feature design
- You invent a new feature (tuples)
- You add it to the lambda calculus
- You invent typing rules and opsem rules
- You extend the basic proof of type safety
- You declare moral victory, and milling throngs of cheering admirers wait to carry you on their shoulders to be knighted by the Queen, etc.

Records

- Records are like tuples with labels (w00t!)
- New form of expressions

$$e ::= ... | \{L_1 = e_1, ..., L_n = e_n\} | e.L$$

New form of values

$$V ::= \{L_1 = V_1, ..., L_n = V_n\}$$

· New form of types

$$\tau ::= ... \ | \ \{L_1 : \tau_1, \, ..., \, L_n : \tau_n\}$$

- ... follows the model of F₁×
 - typing rules
 - derivation rules
 - type soundness

Sum Types

- We need disjoint union types of the form:
 - either an int or a float
 - either 0 or a pointer
 - either a (binary tree node with two children) or a (leaf)
- New expressions and types

$$\begin{array}{ll} e ::= \dots \mid \text{injl } e \mid \text{injr } e \mid \\ & \text{case } e \text{ of injl } x \rightarrow e_1 \mid \text{injr } y \rightarrow e_2 \\ \tau ::= \dots \mid \tau_1 + \tau_2 \end{array}$$

- A value of type $\tau_1 + \tau_2$ is either a τ_1 or a τ_2
- Like union in C or Pascal, but safe
 - distinguishing between components is under compiler control
- case is a binding operator (like "let"): x is bound in e₁ and y is bound in e₂ (like OCaml's "match ... with")

Examples with Sum Types

- Consider the type <u>unit</u> with a single element called * or ()
- The type integer option defined as "unit + int"
 - Useful for optional arguments or return values
 No argument: inil * (OCaml's "None")
 - No argument: injl * (OCaml's "None")
 Argument is 5: injr 5 (OCaml's "Some(5)")
 - To use the argument you $\underline{\text{must}}$ test the kind of argument
 - case arg of injl x \Rightarrow "no_arg_case" | injr y \Rightarrow "...y..."
 - injl and injr are tags and case is tag checking
- bool is the union type "unit + unit"
 - true is injl*
 - false is injr*
 - if e then e_1 else e_2 is case e of injl $x \Rightarrow e_1$ | injr $y \Rightarrow e_2$

Static Semantics of Sum Types

New typing rules

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{injl } e : \tau_1 + \tau_2} \quad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{injr } e : \tau_1 + \tau_2}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 + \tau_2 \quad \Gamma, x : \tau_1 \vdash e_l : \tau \quad \Gamma, y : \tau_2 \vdash e_r : \tau}{\Gamma \vdash \text{case } e_1 \text{ of injl } x \Rightarrow e_l \mid \text{injr } y \Rightarrow e_r : \tau}$$

• Types are not unique anymore

```
injl 1 : int + bool
injl 1 : int + (int \rightarrow int)
```

- this complicates type checking, but it is still doable

Dynamic Semantics of Sum Types

- New values $v ::= ... \mid injl \ v \mid injr \ v$
- New evaluation rules

$$\frac{e \Downarrow v}{\text{injl } e \Downarrow \text{injl } v} \quad \frac{e \Downarrow v}{\text{injr } e \Downarrow \text{injr } v}$$

$$\frac{e \Downarrow \text{injl } v \quad [v/x]e_l \Downarrow v'}{\text{case } e \text{ of injl } x \Rightarrow e_l \mid \text{injr } y \Rightarrow e_r \Downarrow v'}$$

$$\frac{e \Downarrow \text{injr } v \quad [v/y]e_r \Downarrow v'}{\text{case } e \text{ of injl } x \Rightarrow e_l \mid \text{injr } y \Rightarrow e_r \Downarrow v'}$$

18.1

Type Soundness for F₁⁺

- Type soundness still holds
- No way to use a $\tau_1 + \tau_2$ inappropriately
- The key is that the only way to use a $\tau_1 + \tau_2$ is with case, which ensures that you are not using a τ_1 as a τ_2
- In C or Pascal checking the tag is the responsibility of the programmer!
 - Unsafe (yes, even Pascal!)

Types for Imperative Features

- So far: types for pure functional languages
- Now: types for imperative features
- Such types are used to characterize nonlocal effects
 - assignments
 - exceptions
 - typestate
- Contextual semantics is useful here
 - Just when you thought it was safe to forget it ...

Reference Types

- · Such types are used for mutable memory cells
- Syntax (as in ML)

Why do I need: τ ?

 $e ::= ... | ref e : \tau | e_1 := e_2 | ! e$

 $\tau ::= ... \mid \tau \text{ ref}$

- ref e: τ evaluates e, allocates a new memory cell, stores the value of e in it and returns the address of the
 - like malloc + initialization in C, or new in C++ and Java
- $e_1 := e_2$, evaluates e_1 to a memory cell and updates its value with the value of e2
- ! e evaluates e to a memory cell and returns its contents

Global Effects, Reference Cells

• A reference cell can <u>escape</u> the static scope where it was created

 $(\lambda f: int \rightarrow int ref. !(f 5)) (\lambda x: int. ref x : int)$

- The value stored in a reference cell must be visible from the entire program
- The "result" of an expression must now include the changes to the heap that it makes (cf. IMP's opsem)
- To model reference cells we must extend the evaluation model

Modeling References

A heap is a mapping from addresses to values

 $h ::= \cdot \mid h, a \leftarrow v : \tau$

- $a \in Addresses$ (Addresses $\neq \mathbb{Z}$?)
- We tag the heap cells with their types
- Types are useful only for static semantics. They are not needed for the evaluation ⇒ are not a part of the implementation
- We call a program an expression with a heap p ::= heap h in e
 - The initial program is "heap · in e"
 - Heap addresses act as bound variables in the expression
 - This is a trick that allows easy reuse of properties of local variables for heap addresses
 - e.g., we can rename the address and its occurrences at will

Static Semantics of References

• Typing rules for expressions:

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash (\text{ref } e : \tau) : \tau \text{ ref}} \qquad \frac{\Gamma \vdash e : \tau \text{ ref}}{\Gamma \vdash !e : \tau}$$

$$\frac{\Gamma \vdash e_1 : \tau \text{ ref} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 := e_2 : \text{unit}}$$

· and for programs

$$\frac{\Gamma \vdash v_i : \tau_i \; (i=1 \ldots n) \quad \Gamma \vdash e : \tau}{\vdash \text{heap } h \text{ in } e : \tau}$$
 where $\Gamma = a_1 : \tau_1 \text{ ref}, \ldots, a_n : \tau_n \text{ ref}$ and $h = a_1 \leftarrow v_1 : \tau_1, \ldots, a_n \leftarrow v_n : \tau_n$

Contextual Semantics for References

- Addresses are values: v ::= ... | a
- New contexts: $H := ref H \mid H_1 := e_2 \mid a_1 := H_2 \mid ! \mid H$
- No new local reduction rules
- But some new *global* reduction rules
 - heap h in H[ref v : τ] \rightarrow heap h, a \leftarrow v : τ in H[a]
 - where a is fresh (this models allocation the heap is extended)
 - heap h in H[! a] \rightarrow heap h in H[v]
 - where $a \leftarrow v : \tau \in h$ (heap lookup can we get stuck?)
 - heap h in H[a := v] \rightarrow heap h[a \leftarrow v] in H[*]
 - where h[a \leftarrow v] means a heap like h except that the part "a \leftarrow v₁ : τ " in h is replaced by "a \leftarrow v : τ " (memory update)
- Global rules are used to propagate the effects of a write to the entire program (eval order matters!)

Example with References

- Consider these (the redex is underlined)
 - heap \cdot in $(\lambda f: \text{int} \rightarrow \text{int ref. } !(f 5))$ $(\lambda x: \text{int. ref } x: \text{int.})$
 - heap · in ! $((\lambda x:int. ref x:int) 5)$
 - heap · in !(ref 5 : int)
 - <u>heap a = 5 : int in !a</u>
 - heap a = 5 : int in 5
- The resulting program has a useless memory cell
- An equivalent result would be

heap · in 5

• This is a simple way to model garbage collection

Homework

- Read Wright and Felleisen article
 - ... that you didn't read on Tuesday.
 - Or that optional Goodenough one ...
- Soon: Bonus Lecture #2 Scheduling
- Work on your projects!
 - Status Update Due Tue Oct 24