Simply-Typed
Lambda Calculus

BEFORE: GOING

DOWN A STEEP

HILL LIRE THIS,
SHOWD

OtE.
ALHNS GWNE
WIS SLED A

Homework Five Is Alive

» Ocaml now installed on dept
linux/solaris machines in
/usr/cs (e.g.,
/usr/cs/bin/ocamlc)

ALLEY BrEve
SHEEDY OUTTEMBERD

e There will be no Number Six
s

f Humber &

Lecture Schedule

Thu Oct 13 - Today

Tue Oct 14 - Monomorphic Type Systems

Thu Oct 12 - Exceptions, Continuations, Rec Types
e Tue Oct 17 - Subtyping

- Homework 5 Due

Thu Oct 19 - No Class

Tue Oct 24 - 2" Order Types | Dependent Types
- Double Lecture

- Food?

- Project Status Update Due

Thu Oct 26 - No Class

Tue Oct 31 - Theorem Proving, Proof Checking

#3

Back to School

» What is operational semantics? When would
you use contextual (small-step) semantics?

« What is denotational semantics?

« What is axiomatic semantics? What is a
verification condition?

Wi Does BECHISE ITS COAD IR TS | 05 THAT | LODK (T U hed 1 SHoulD JGT | U O
1CE PLOAT ? O GET WMEM, SO W GES TRIE? FIND QUT, LOGK STURF UP | LEARN A LOT|
To THE P OF UGUDS N I THE FRST | TALENG TO
ORR o BE MERRERTD | | PLACE ME
| — THE S | | R o
Y R
?W ™
&x & 0T
: ﬁ]
Fr M=
o \

Today’s (Short?) Cunning Plan

« Type System Overview

« First-Order Type Systems
» Typing Rules

« Typing Derivations

o Type Safety

77)

!
B
2| THAT'S MANAGEMENT

N:*?:NDSSSYE\JEZ & FouL-UP NUMBER TwO. WE DON'T ANTICIPATE

TIMELINE? E IT USUALLY HAPPENS ANY MANAGEMENT
i E ARCUND THE THIRD MISTAKES.
THATS

§ MFUL.
-
H
-
H
H

30+ © 2006 5001t Adams, Inc./Dist. by UFS, Inc.

3, ‘\g W A

)\ 4

Why Typed Languages?

« Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation
« Maintenance
- Types act as checked specifications
- Types can enforce abstraction
« Execution
- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
« the compiler can generate better code

Why Not Typed Languages?

« Static type checking imposes constraints on the
programmer
- Some valid programs might be rejected
- But often they can be made well-typed easily
- Hard to step outside the language (e.g. OO programming
in a non-00 language, but cf. Ruby, OCaml, etc.)
« Dynamic safety checks can be costly
- 50% is a possible cost of bounds-checking in a tight loop
« In practice, the overall cost is much smaller
- Memory management must be automatic = need a
garbage collector with the associated run-time costs

- Some applications are justified in using weakly-typed
languages (e.g., by external safety proof)

47

Safe Languages
» There are typed languages that are not safe
(“weakly typed languages”)
» All safe languages use types (static or dynamic)
Typed Untyped

Static Dynamic

Safe ML, Java, |Lisp, Scheme, Ruby, | A-calculus
Ada, C#, Perl, Smalltalk,
Haskell, ... PHP, Python, ...

» We focus on statically typed languages

48

Properties of Type Systems

« How do types differ from other program
annotations?
- Types are more precise than comments
- Types are more easily mechanizable than
program specifications
» Expected properties of type systems:
- Types should be enforceable
- Types should be checkable algorithmically

- Typing rules should be transparent
« Should be easy to see why a program is not well-typed

9]

Why Formal Type Systems?

» Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

« A fair amount of careful analysis is required
to avoid false claims of type safety

« A formal presentation of a type system is a
precise specification of the type checker
- And allows formal proofs of type safety

« But even informal knowledge of the
principles of type systems help

Formalizing a Type System

1. Syntax

« Of expressions (programs)

o Of types

« Issues of binding and scoping
2. Static semantics (typing rules)

« Define the typing judgment and its derivation rules
3. Dynamic semantics (e.g., operational)

« Define the evaluation judgment and its derivation rules
4. Type soundness

« Relates the static and dynamic semantics

« State and prove the soundness theorem

Typing Judgments

o Judgment (recall)
- A statement J about certain formal entities
- Has a truth value = J

- Has a derivation + J (= “a proof”)
« A common form of typing judgment:
T'kFe:x (e is an expression and t is a type)

» [(Gamma) is a set of type assignments for the free
variables of e

- Defined by the grammar ' ::=- | T, x: 1
- Type assignments for variables not free in e are not
relevant

-eg, x:int,y:intkFx+y:int

Typing rules

» Typing rules are used to derive typing
judgments

MF1:int
« Examples:
z:7 €T
Mx:7
Fey:int [Fep:int
MFe; +eo:int

Typing Derivations

« A typing derivation is a derivation of a typing
judgment (big surprise there ...)

« Example:
xlintkFx:int x:!intF 1! int
x.int F x: int x:intF x4 1: int
riintkFax 4+ (24 1) int

« Wesay I' - e : 1 to mean there exists a derivation
of this typing judgment (= “we can prove it”)

Type checking: given T, e and z find a derivation

Type inference: given T" and e, find t and a
derivation

Proving Type Soundness

« A typing judgment is either true or false
» Define what it means for a value to have a type
Vel
(e.g. 5 €| int || and true € || bool ||)
. tDefine what it means for an expression to have a
ype

ec |t| iff w.E@elv=ve|r|)
» Prove type soundness
If-re:s thene €| 1|
or equivalently
If-Fe:tandelv thenve| 1|

« This implies safe execution (since the result of a
unsafe execution is not in || t || for any t)

Upcoming Exciting Episodes

» We will give formal description of first-order type
systems (no type variables)
- Function types (simply typed A-calculus)
- Simple types (integers and booleans)
- Structured types (products and sums)
- Imperative types (references and exceptions)
- Recursive types (linked lists and trees)
» The type systems of most common languages are
first-order
» Then we move to second-order type systems
- Polymorphism and abstract types

Simply-Typed Lambda Calculus

« Syntax:
Terms e ::= X | AX:T. € | e, e,
| n | e,+e, |iszeroe
| true | false | not e
| if e, then e, else e;
Types t:=int | bool | T, — 1,

» 1, — 1, is the function type

e — associates to the right

« Arguments have typing annotations :t
« This language is also called F,

Static Semantics of F,
« The typing judgment

'Fe:x
» Some (simpler) typing rules:
x el Ma:tke: 7
FFa:7 F-Xe:te:7— 1
|_|—€12T2—)T FI—BQZTQ

[Feier: T

More Static Semantics of F,
NFep:int [Fes:int

M+n:int ke 4+eor:int

I+ e:bool
[T true : bool [T F not e : bool
Fep:bool [he:r [heprr

I"F if eq then e; else e T

Typing Derivation in F,

 Consider the term
AX :int. Ab : bool. if b then f x else x
- With the initial typing assighment f : int — Int
- WhereT =f:int —int, x : int, b : bool

Mef:int = int ko int

b bool M- fx:int Mex:!int
fiint = int,x:int, b bool F if bthen [r else s : int
fiint — int,x ;int F Ab beol, if b then [x else x | bool — int

fiint — int FAx @ int. Ab @ bool. if b then f r else ©: int — bool — int

Type Checking in F,

» Type checking is easy because
- Typing rules are syntax directed
- Typing rules are compositional (what does this mean?)
- All local variables are annotated with types

« In fact, type inference is also easy for F,
» Without type annotations an expression may have
no unique type
- AX. X rint — int
- F Ax. x : bool — bool

Operational Semantics of F,

« Judgment:

elv
« Values:

v :i:=n | true | false | Ax:t. e
e The evaluation rules ...

- Audience participation time: raise your hand and
give me an evaluation rule.

Opsem of F, (Cont.)

« Call-by-value evaluation _rules (sample)

O
ArcTell ArTe O

ey b Az ire] ealvs [uafale] Lo
ey es v

Where is the
Call-By-Value?
How might we
change it?

epdbny esllng n=mny+no
ndln e1texln

eq Il true e v
if e; then e; else ef v

Evaluation is
undefined for ill-
ey || false ey llv tyPEd programs !

if e; then ¢; else ef o

Type Soundness for F,

e Theorem: If -Fe:t andel vthen-Fv:z

- Also called, subject reduction theorem, type
preservation theorem

« This is one of the most important sorts of
theorems in PL

« Whenever you make up a new safe language
you are expected to prove this
- Examples: Vault, TAL, CCured, ...

 Proof: next time!

Homework

» Read Wright and Felleisen article
« Work on your projects! <> >
The reading is
- Status Update Due Soon not optional.
» Work on Homework 5

BEFORE I HAND oUT T'VE GaT A BAD

i THE READING LIST, 15 FEELING ABoUT
i THERE ANYONE HERE THIS CLASS.
_~ WITH CPR TRAINING?

