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SimplySimply--TypedTyped
Lambda CalculusLambda Calculus

#2

Homework Five Is Alive

• Ocaml now installed on dept 
linux/solaris machines in 
/usr/cs (e.g., 
/usr/cs/bin/ocamlc)

• There will be no Number Six

#3

Lecture Schedule
• Thu Oct 13 – Today
• Tue Oct 14 – Monomorphic Type Systems
• Thu Oct 12 – Exceptions, Continuations, Rec Types
• Tue Oct 17 – Subtyping

– Homework 5 Due
• Thu Oct 19 – No Class
• Tue Oct 24 – 2nd Order Types | Dependent Types

– Double Lecture
– Food? 
– Project Status Update Due

• Thu Oct 26 – No Class
• Tue Oct 31 – Theorem Proving, Proof Checking

#4

Back to School

• What is operational semantics? When would 
you use contextual (small-step) semantics?

• What is denotational semantics?
• What is axiomatic semantics? What is a 

verification condition? 

#5

Today’s (Short?) Cunning Plan

• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety

#6

Why Typed Languages?

• Development
– Type checking catches early many mistakes
– Reduced debugging time
– Typed signatures are a powerful basis for design
– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications
– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking
– Safe languages are easier to analyze statically

• the compiler can generate better code
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Why Not Typed Languages?

• Static type checking imposes constraints on the 
programmer
– Some valid programs might be rejected
– But often they can be made well-typed easily
– Hard to step outside the language (e.g. OO programming 

in a non-OO language, but cf. Ruby, OCaml, etc.)

• Dynamic safety checks can be costly
– 50% is a possible cost of bounds-checking in a tight loop

• In practice, the overall cost is much smaller
– Memory management must be automatic ⇒ need a 

garbage collector with the associated run-time costs
– Some applications are justified in using weakly-typed 

languages (e.g., by external safety proof)
#8

Safe Languages
• There are typed languages that are not safe 

(“weakly typed languages”)
• All safe languages use types (static or dynamic)

• We focus on statically typed languages

Assembly?C, C++, 
Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby, 
Perl, Smalltalk, 
PHP, Python, …

ML, Java, 
Ada, C#, 

Haskell, ...

Safe

DynamicStatic

UntypedTyped

#9

Properties of Type Systems
• How do types differ from other program 

annotations?
– Types are more precise than comments
– Types are more easily mechanizable than 

program specifications

• Expected properties of type systems:
– Types should be enforceable
– Types should be checkable algorithmically
– Typing rules should be transparent

• Should be easy to see why a program is not well-typed

#10

Why Formal Type Systems?
• Many typed languages have informal 

descriptions of the type systems (e.g., in 
language reference manuals)

• A fair amount of careful analysis is required 
to avoid false claims of type safety

• A formal presentation of a type system is a 
precise specification of the type checker
– And allows formal proofs of type safety

• But even informal knowledge of the 
principles of type systems help

#11

Formalizing a Type System
1. Syntax

• Of expressions (programs)
• Of types
• Issues of binding and scoping

2. Static semantics (typing rules)
• Define the typing judgment and its derivation rules

3. Dynamic semantics (e.g., operational)
• Define the evaluation judgment and its derivation rules

4. Type soundness
• Relates the static and dynamic semantics
• State and prove the soundness theorem

#12

Typing Judgments

• Judgment (recall)
– A statement J about certain formal entities
– Has a truth value ² J
– Has a derivation ` J (= “a proof”)

• A common form of typing judgment: 
Γ ` e : τ (e is an expression and τ is a type)

• Γ (Gamma) is a set of type assignments for the free 
variables of e
– Defined by the grammar Γ ::= · | Γ, x : τ
– Type assignments for variables not free in e are not 

relevant
– e.g,    x : int, y : int ` x + y : int
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Typing rules

• Typing rules are used to derive typing 
judgments

• Examples:

#14

Typing Derivations

• A typing derivation is a derivation of a typing 
judgment (big surprise there …)

• Example:

• We say Γ ` e : τ to mean there exists a derivation
of this typing judgment (= “we can prove it”)

• Type checking: given Γ, e and τ find a derivation
• Type inference: given Γ and e, find τ and a 

derivation

#15

Proving Type Soundness

• A typing judgment is either true or false
• Define what it means for a value to have a type

v ∈ k τ k
(e.g. 5 ∈ k int k and true ∈ k bool k )

• Define what it means for an expression to have a 
type

e ∈   | τ | iff ∀v. (e ⇓ v ⇒ v ∈ k τ k)
• Prove type soundness

If · ` e : τ then e ∈ | τ |
or equivalently

If · ` e : τ and e ⇓ v then v ∈ k τ k

• This implies safe execution (since the result of a 
unsafe execution is not in k τ k for any τ)

#16

Upcoming Exciting Episodes
• We will give formal description of first-order type 

systems (no type variables)
– Function types (simply typed λ-calculus)
– Simple types (integers and booleans)
– Structured types (products and sums)
– Imperative types (references and exceptions)
– Recursive types (linked lists and trees)

• The type systems of most common languages are 
first-order

• Then we move to second-order type systems
– Polymorphism and abstract types

#17

Simply-Typed Lambda Calculus
• Syntax:

Terms     e ::=  x | λx:τ. e | e1 e2

|  n | e1 + e2 | iszero e
| true | false | not e             
| if e1 then e2 else e3

Types     τ ::= int | bool | τ1 → τ2

• τ1 → τ2 is the function type
• → associates to the right
• Arguments have typing annotations :τ
• This language is also called F1

Notice :τ

#18

Static Semantics of F1
• The typing judgment

Γ ` e : τ
• Some (simpler) typing rules: 



4

#19

More Static Semantics of F1

Why do we leave this mysterious gap? I don’t know either!

#20

Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment  f : int → Int
– Where Γ = f : int → int, x : int, b : bool

#21

Type Checking in F1

• Type checking is easy because
– Typing rules are syntax directed
– Typing rules are compositional (what does this mean?)
– All local variables are annotated with types

• In fact, type inference is also easy for F1

• Without type annotations an expression may have 
no unique type

· ` λx. x : int → int
· ` λx. x : bool → bool

#22

Operational Semantics of F1

• Judgment:

e ⇓ v
• Values:

v ::= n | true | false | λx:τ. e
• The evaluation rules …

– Audience participation time: raise your hand and 
give me an evaluation rule. 

#23

Opsem of F1 (Cont.)
• Call-by-value evaluation rules (sample)

Evaluation is 
undefined for ill-
typed programs ! 

Where is the 
Call-By-Value? 
How might we 

change it? 

#24

Type Soundness for F1

• Theorem: If · ` e : τ and e ⇓ v then · ` v : τ
– Also called, subject reduction theorem, type 

preservation theorem

• This is one of the most important sorts of 
theorems in PL

• Whenever you make up a new safe language 
you are expected to prove this
– Examples: Vault, TAL, CCured, …

• Proof: next time!
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Homework

• Read Wright and Felleisen article
• Work on your projects!

– Status Update Due Soon
• Work on Homework 5

The reading is 
not optional.


