More Lambda Calculus
and
Intro to Type Systems

Yo ¥NOW, T ‘ TEAW. AL TWESE EQUATIONS | THIS WHOLE BoOoK 1S PAL

DOWT THINK ARG LIKE MIRACIES. Yo | OF THINGS THAT WAE TO 0

MATH 15 A THEE THO HOMBERS MM WHEN | BE ACCEPTED OW FAITH! HO LB, CAUL (SHouLD B EXE)
SUENCE, [5 100 AT THEM, THEY MAGICHLY s A FRotl THIS .
THINK. 1TS | BECOME OME MEW NUMBER/ | RELIGION!

A RELIGION,. o NO ONE CH S HOW T

i OR oy DONT.

The Reading

» Explain the Xavier Leroy article to me ...

| The correctness of the translation follows from a simulation!
argument between the executions of the Cminor source and the|
RTL translation, proved by induction on the Cminor evaluation
) derivation. In the case of expressions, the simulation property is
| summarized by the ollowing diagra: A
A |
: sp:Lya, E,M iGN spyns, B, M ‘
| : !
|

|
i

' On the choice of semantics We used big-step semantics| for the '
! source language. “mixed-step” semantics for the intermediate lan- !
! guages, and for the target language. A con- '
" sequence of this choice is that our semantic preservation theorems :

"hold only for terminating source programs: they all have premises .
program evaluates to result »”"} which

» How did he do register allocation?

2]
Plan Lambda Review
» Heavy Class Participation o A-calculus is a calculus of functions
- Thus, wake up! (not actually kidding) e:=x |Ax.e | e e
» Lambda Calculus
) s o
How N it related to real life? « Several evaluation strategies exist based on
- Encodings .
. . 3-reduction
- Fixed points , y
« Type Systems (Ax.e) e’ =g [e’/x] e
- Overview
- Static, Dyamic » How does this simple calculus relate to real
- Safety, Judgments, Derivations, Soundness programming languages?
#3] #a
Functional Programming Programming With Functions
* The K'CalCU'lUS is a prototypical functional - Functional programming is a programming style
language with: that relies on lots of functions
- no side effects A typical functional paradigm is using functions as
- several evaluation strategies arguments or results of other functions
- lots of functions - Called “higher-order programming”
- nothing but functions (pure A-calculus does not + Some “impure” functional languages permit side-
have any other data type) effects (e.g., Lisp, Scheme, ML, Python)
- references (pointers), in-place update, arrays,
. . exceptions
» How can we program with functions? - Others (and by “others” we mean “Haskell”) use monads
« How can we program with only functions? to model state updates
5] 6]

Variables in Functional Languages

» We can introduce new variables:
letx=¢e,ine,
- x is bound by let
- xis statically scoped in (a subset of) e,
« This is pretty much like (Ax. e,) e,
« In a functional language, variables are never
updated
- they are just names for expressions or values
- e.g., x is a name for the value denoted by e, in e,
» This models the meaning of “let” in math (proofs)

#7

Referential Transparency

« In “pure” functional programs, we can reason
equationally, by substitution
- Called “referential transparency”

letx=e;ine, === [e,/X]e,

« In an imperative language a side-effect in e, might
invalidate the above equation

» The behavior of a function in a “pure” functional
language depends only on the actual arguments
- Just like a function in math

- This makes it easier to understand and to reason about
functional programs

How Tough Is Lambda?

 Given e, and e,, how complex (a la CS
theory) is it to determine if:

e, —, e and e, —; e

THE MORE YOU KNOW, THE
HARDER. IT IS TO TAKE
DECISWE ACTION

ONCE YOU BECOME
INFORMED , YOU START
SEEING COMPLEX(TIES
AND SHADES
OF GRAY

NOJ REALIZE THAT NOTHING | BEING A MAN OF ACTION,
1S RS CLEAR AND SIMPLE | I CANT AFFORD TO TAKE
AS \T FIRST APPEARS. | THAT RisK.
ULTIMATELY, KNOWLEDSE
1S PARALNZING .

YOURE IGNORANT,
BUT AT LEAST
YOU ACT ON IT.

Expressiveness of A-Calculus

o The A-calculus is a minimal system but can express
- data types (integers, booleans, lists, trees, etc.)
- branching
- recursion

« This is enough to encode Turing machines
- We say the lambda calculus is Turing-complete

+ Corollary: e, =; e, is undecidable

« Still, how do we encode all these constructs using
only functions?

« |dea: encode the “behavior” of values and not
their structure

Encoding Booleans in A-Calculus

» What can we do with a boolean?

- we can make a binary choice (= “if” statement)
» A boolean is a function that, given two

choices, selects one of them:

- true Sgef AX. AY. X

- false Zgef AX. AY.Y

- ifE;thenE,else E; =4+ E,E,E;
» Example: “if true then u else v” is

(AX. Ry. x)uv =5 (Ay. U) v =5 u

More Boolean Encodings

 Let’s try to do boolean or together
» Recall:
- true Sgef MX.AY. X
- false =gef AX.AY.Y
- if E; then E, else E; =4r EqE; E5
» We want or to take in two booleans and yield
a result that is a boolean
« How can we do this?

A Trying Ordeal

» Recall:
- true Sgef MX.AY. X
- false =gef AX.AY.Y
- if E; then E, else E; =4r EqE; E5
e Intution:
-orab = if a then true else b

« Either of these will work:
- or =4ef M. Ab. a true b
- or =4ef M. AD. AX. Ay. ax (b xy)

Final Boolean Encodings

e Think about how to do and and not
» Without peeking!

Another Demand

e How to do and and not

«andab = if a then b else false
- and =4er AA. Ab. a b false
- and =gef MA. AD. AX. Ay. a (b xy)y
e not a = if a then false else true
- not =4ef M. a false true
- not Sgef MA. AX. LY. @Y X

Encoding Pairs in A-Calculus

» What can we do with a pair?

- we can access one of its elements (= “.field
access”)

« A pair is a function that, given a boolean,
returns the first or second element
mkpair xy =4 Ab.bxy
fst p =4ef P true
snd p =4¢ P false
« fst (mkpair x y) —p (Mkpair x y) true
—ptruexy —pX

Encoding Numbers in A—Calculus

« What can we do with a natural number?
- What do you, the viewers at home, think?

MISS WORMWOOD,
1 HANE A

QUESTION ABWT
THIS MATH
LESSON .

GINEN THAT, SOONER OR TURN TO NOBODY LIKES US
LATER, WERE AL JUST PAGE 83, "BIG PICTURE"
GOING TO DIE, WHAT'S CLASS. PEOPLE

THE POINT OF LEARNING

3‘%
SN
%

W

Encoding Numbers A-Calculus

» What can we do with a natural number?
- we can iterate a number of times over some function (=
“for loop”)
« A natural number is a function that given an
operation f and a starting value s, applies f a
number of times to s:

0 =gef Mf.AS. S
1 =g4ef Mf. AS. 5
2 =qef Af. As. f (fs)

- Very similar to List.fold_left and friends
» These are numerals in a unary representation
o Called Church numerals

Test Time!

» How would you encode the successor
function (succ x = x+1)?

» How would you encode more general
addition?

e Recall: 4 =4 A\f. As. fff (f5s)

SEE, HOBBES, WE SWOULDNT
NEED ACCOMPLISUMENTS To t
ABOVT QURSELVES. | LE)

REMIND ME) T THINKG THIS

SHOUD TRE.

PRIDE 1N QUR
MEDIOCRTY

Computing with Natural Numbers

« The successor function

succ n =gef M. As. f(nfs)
or succ n =4ef M. As. nf (fs)
« Addition
add ngn, =44 Ny succn,
» Multiplication

mult ny n, =4 Ny (@dd ny) 0
» Testing equality with 0

iszeron =4 n (Ab. false) true

Subtraction
- Is not instructive, but makes a fun exercise ...

Computation Example

» What is the result of the application add 0?
(Ang. Any. nysucc ny) 00—
An,. 0 succ n, =
An,. (Af. As. s) succ n, —
AN, N, =
AX. X
» By computing with functions we can express
some optimizations
- But we need to reduce under the lambda
- Thus this “never” happens in practice

Toward Recursion

« Given a predicate P, encode the function “find”
such that “find P n” is the smallest natural number
which is larger than n and satisfies P

o Claim: with find we can encode all recursion

Intuitively, why is this true?

DAD, ARE. YOU VICARIQUSLY LIVING [| IF T WERE, You :

THROUGH ME N THE HOPE THAT MY || CAN BET 1D 8E Mo,]
ACCOMPLISHMENTS WILL VALIDATE | RE-EVALUATING n DAD KEEPS | [
YOUR MEDIOCRE oy | | M{ STRATEGY

LIFE AND IN SOME | 4 M

INSULTING /
ME.
WAY COMPENSATE | —

5

i

FOR AL OF TUE |
OPRRTUNITIES /‘

YOu BOTCHED ™
— |J
¥

Encoding Recursion

» Given a predicate P encode the function “find”
such that “find P n” is the smallest natural number
which is larger than n and satisfies P

» find satisfies the equation

find p n = if p n then n else find p (succ n)

» Define

F = Af.Ap.An.(p n) n (f p (succ n))
* We need a fixed point of F
find = F find
or
findpn=Ffindpn

The Fixed-Point Combinator Y

Let Y = AF. (Ay.F(y y)) (Ax. F(x X))
- This is called the fixed-point combinator
- Verify that Y F is a fixed point of F
YF =4 (Ly.F (yy)) Ax. F (xx)) =4 F (YF)
- Thus Y F =, F (Y F)
Given any function in A-calculus we can compute
its fixed-point (w00t! why do we not win here?)
» Thus we can define “find” as the fixed-point of the
function F from the previous slide

» Essence of recursion is the self-application “y y”

Expressiveness of Lambda
Calculus

» Encodings are fun
- Yes! Yes they are!
» But programming in pure A-calculus is painful

» So we will add constants (0, 1, 2, ..., true,
false, if-then-else, etc.)

» Next we will add types

TCG\WN =4 Hobh

Wes 5> 2

O EARTHLING AS EVER BEFORE |
SFEN THE CRATERED SCARRED
SURFACE OF DISTANY PLIG) 206!

ATVOKH TS
SOME Of THORE.
oMM,

NOT ONIKE
Zr
WS

break

Types

» A program variable can assume a range of
values during the execution of a program

» An upper bound of such a range is called a
type of the variable
- A variable of type “bool” is supposed to assume
only boolean values

- If x has type “bool” then the boolean expression
“not(x)” has a sensible meaning during every run
of the program

Typed and Untyped Languages

o Untyped languages

- Do not restrict the range of values for a given variable

- Operations might be applied to inappropriate arguments.
The behavior in such cases might be unspecified

- The pure A-calculus is an extreme case of an untyped
language (however, its behavior is completely specified)

o (Statically) Typed languages

- Variables are assigned (non-trivial) types
- A type system keeps track of types

- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

The Purpose Of Types

» The foremost purpose of types is to prevent certain
types of run-time execution errors
» Traditional trapped execution errors
- Cause the computation to stop immediately
- And are thus well-specified behavior
- Usually enforced by hardware
- e.g., Division by zero, floating point op with a NaN
- e.g., Dereferencing the address 0 (on most systems)
» Untrapped execution errors
- Behavior is unspecified (depends on the state of the
machine = this is very bad!)
- e.g., accessing past the end of an array
- e.g., jumping to an address in the data segment

« A program is deemed safe if it does not cause untrapped
errors

- Languages in which all programs are safe are safe languages
« For a given language we can designate a set of forbidden
errors
- Asuperset of the untrapped errors, usually including some trapped

Execution Errors

errors as well
« e.g., null pointer dereference

e Modern Type System Powers:

- prevent race conditions (e.g., Flanagan TLDI ‘05)
- prevent insecure information flow (e.g., Li POPL ’05)
- prevent resource leaks (e.g., Vault, Weimer)
- help with generic programming, probabilistic languages, ...

- ... are often combined with dynamic analyses (e.g., CCured)

Still Going!
& « One minute

e Stretch!

Preventing Forbidden Errors -
Static Checking

 Forbidden errors can be caught by a
combination of static and run-time checking
« Static checking
- Detects errors early, before testing
- Types provide the necessary static information
for static checking
- e.g., ML, Modula-3, Java
- Detecting certain errors statically is undecidable
in most languages

Preventing Forbidden Errors -
Dynamic Checking

» Required when static checking is
undecidable

- e.g., array-bounds checking

» Run-time encodings of types are still used
(e.g. Lisp)

« Should be limited since it delays the
manifestation of errors

 Can be done in hardware (e.g. null-pointer)

Safe Languages

» There are typed languages that are not safe
(“weakly typed languages”)

» All safe languages use types (static or dynamic)

Typed Untyped
Static Dynamic
Safe ML, Java, |Lisp, Scheme, Ruby, | A-calculus
Ada, C#, Perl, Smalltalk,
Haskell, ... PHP, Python, ...

» We focus on statically typed languages

Why Typed Languages?

» Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation
» Maintenance
- Types act as checked specifications
- Types can enforce abstraction
o Execution
- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
« the compiler can generate better code

Homework

» Read Cardelli article
» Read great works of literature
o Homework 5 Due In A Fortnight

