

Plan

- Introduce lambda calculus
 - Syntax
 - Substitution
 - Operational Semantics (... with contexts!)
 - Evaluations strategies
 - Equality
- Later:
 - Relationship to programming languages
 - Study of types and type systems

Why Should I Care?

- A language with 3 expressions? Woof!
- Li and Zdancewic. Downgrading policies and relaxed noninterference. POPL '05

- Just one example of a recent PL/security paper		
 LOCAL DOWNGRADING POLICIES 4.1 Label Definition 	$\frac{\Gamma \vdash m : \tau}{\Gamma \vdash m \equiv m : \tau}$	Q-Refl
Definition 4.1.1 (The policy language). In Figure 1.	$\frac{\Gamma \vdash m_1 \equiv m_2 : \tau}{\Gamma \vdash m_2 \equiv m_1 : \tau}$	Q-Symm
Types $\tau ::= \text{ int } \tau \rightarrow \tau$ Constants $c ::= c_i$ Operators $\oplus := + - =$	$\frac{\Gamma \vdash m_1 \equiv m_2: \tau \qquad \Gamma \vdash m_2 \equiv m_3: \tau}{\Gamma \vdash m_1 \equiv m_3: \tau}$	Q-TRAN:
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{\Gamma, x : \tau_1 \vdash m_1 \equiv m_2 : \tau_2}{\Gamma \vdash \lambda x : \tau_1. \ m_1 \equiv \lambda x : \tau_1. \ m_2 : \tau_1 \rightarrow \tau_2}$	Q-ABS
Figure 1: L _{local} Label Syntax The core of the policy language is a variant of the simply-	$ \begin{array}{c} \Gamma \vdash m_1 \equiv m_2: \tau_1 \rightarrow \tau_2 \\ \Gamma \vdash m_3 \equiv m_4: \tau_1 \\ \hline \Gamma \vdash m_1 \; m_3 \equiv m_2 \; m_4: \tau_2 \end{array} $	Q-App
typed λ -calculus with a base type, binary operators and con- stants. A downgrading policy is a λ -term that specifies how an integer can be downgraded: when this λ -term is ap- plied to the constant integer the result because a public.	$\Gamma \vdash m_1 \equiv m_2$: int $\Gamma \vdash m_3 \equiv m_4$: int $\overline{\Gamma \vdash m_2} \equiv m_2 \oplus m_2$: int	Q-BinOi

Examples of Lambda Expressions

- The identity function:
 - I =_{def} λx. x
- A function that, given an argument y, discards it and yields the identity function:

λγ. (λχ. χ)

• A function that, given an function f, invokes it on the identity function:

λf. f (λx. x)

"There goes our grant money."

Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope
 - The <u>scope</u> of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx . E <u>binds</u> variable x in E
 - x is the newly introduced variable
 - E is the scope of x (unless x is shadowed)
 - We say x is bound in λx . E
 - Just like formal function arguments are bound in the function body

Free and Bound Variables

- A variable is said to be <u>free</u> in E if it has occurrences that are not bound in E
- We can define the free variables of an expression E recursively as follows:
 - Free(x) = {x}
 - Free($E_1 E_2$) = Free(E_1) \cup Free(E_2)
- Free(λx . E) = Free(E) {x}
- Example: Free($\lambda x. x (\lambda y. x y z)$) = {z}
- Free variables are (implicitly or explicitly) declared outside the expression

Free Your Mind!

- Just as in any language with statically-nested scoping we have to worry about variable <u>shadowing</u>
 - An occurrence of a variable might refer to different things in different contexts
- Example in IMP with locals:
 - let x = 5 in x + (let x = 9 in x) + x
- In λ-calculus:

λ**x**. **x** (λ<u>**x**</u>. <u>**x**</u>) **x**

Renaming Bound Variables λ-terms that can be obtained from one another by renaming bound variables are considered *identical*This is called <u>α-equivalence</u> Renaming bound vars is called <u>α-renaming</u> Ex: λx. x is identical to λy. y and to λz. z Intuition: By changing the name of a formal argument and all of its occurrences in the function body, the behavior of the function *does not change*

- In λ -calculus such functions are considered identical

Substitution The substitution of F for x in E (written [F/x]E) Step 1. Rename bound variables in E and F so they are unique Step 2. Perform the textual substitution of f for X in E Called capture-avoiding substitution Example: [y (λx. x) / x] λy. (λx. x) y x After renaming: [y (λx. x) / x] λz. (λu. u) z x After substitution: λz. (λu. u) z (y (λx. x)) If we are not careful with scopes we might get: λy. (λx. x) y (y (λx. x)) ← wrong!

Combinators

- A λ -term without free variables is <u>closed</u> or a <u>combinator</u>
- Some interesting combinators:
 - $I = \lambda \mathbf{x} \cdot \mathbf{x}$
 - $\mathbf{K} = \lambda \mathbf{x} \cdot \lambda \mathbf{y} \cdot \mathbf{x}$
 - S = λ f. λ g. λ x. f x (g x) D = λ x x x
 - $D = \lambda \mathbf{x} \cdot \mathbf{x} \mathbf{x}$
 - $Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$
- Theorem: any closed term is equivalent to one written with just S, K and I
 - Example: $D =_{\beta} S | I |$
- (we'll discuss this form of equivalence later)

Informal Semantics

- We consider only closed terms
- The evaluation of

(λ x. e) f

- Binds x to f
- Evaluates e with the new binding
- Yields the result of this evaluation
- Like a function call, or like "let x = f in e"
- Example:
 - $(\lambda f. f (f e)) g$ evaluates to g (g e)

 The definition of substitution guarantees that evaluation respets static scoping: (λ x. (λ y. y x)) (y (λ x. x)) →_β λ z. z (y (λ v. v))

(y remains free, i.e., defined externally)

• If we forget to rename the bound y: $(\lambda x. (\lambda y. y x)) (y (\lambda x. x)) \rightarrow_{\beta}^{*} \lambda y. y (y (\lambda v. v))$ (y was free before but is bound now)

Contextual Opsem

 $e \to f$

 $H[e] \rightarrow H[f]$

 $(\lambda \mathbf{x}. \mathbf{e}) \mathbf{f} \rightarrow [\mathbf{f}/\mathbf{x}]\mathbf{e}$

- Contexts allow concise formulations of <u>congruence</u> rules (application of local reduction rules on subterms)
- Reduction occurs at a $\beta\text{-redex}$ that can be anywhere inside the expression
- The latter rule is called a <u>congruence</u> or structural rule
- The above rules to not specify which redex must be reduced first

Corollaries

- If $e_1 =_{\beta} e_2$ and e_1 and e_2 are normal forms then e_1 is identical to e_2
 - From C-R we have $\exists e_3. e_1 \rightarrow_{\beta}^* e_3$ and $e_2 \rightarrow_{\beta}^* e_3$
 - Since e_1 and e_2 are normal forms they are identical to e_3
- If e →_β^{*} e₁ and e →_β^{*} e₂ and e₁ and e₂ are normal forms then e₁ is identical to e₂
 "All terms have a unique normal form."

Evaluation Strategies

- Church-Rosser theorem says that independent of the reduction strategy we will find ≤ 1 normal form
- But some reduction strategies might find 0
- $(\lambda x. z) ((\lambda y. y y) (\lambda y. y y)) \rightarrow$ $(\lambda x. z) ((\lambda y. y y) (\lambda y. y y)) \rightarrow ...$
- $(\lambda x. z) ((\lambda y. y y) (\lambda y. y y)) \rightarrow z$
- There are three traditional strategies - normal order (never used, always works)
 - call-by-name (rarely used, cf. TeX)
 - call-by-value (amazingly popular)

Civilization: Call By Value Normal Order Evaluates the left-most redex not contained in another redex If there is a normal form, this finds it Not used in practice: requires partially evaluating function pointers and looking "inside" functions Call-By-Name ("lazy") Don't reduce under λ, don't evaluate a function argument (until you need to) Does not always evaluate to a normal form

- Don't reduce under λ , do evaluate a function's argument
- right away
- Finds normal forms less often than the other two

Endgame

- This time: λ syntax, semantics, reductions, equality, ...
- Next time: encodings, real prorams, type systems, and all the fun stuff!

Wisely done, Mr. Freeman. I will see you up ahead.

