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Lambda CalculusLambda Calculus

#2

Plan

• Introduce lambda calculus

– Syntax

– Substitution

– Operational Semantics (… with contexts!)

– Evaluations strategies

– Equality

• Later: 

– Relationship to programming languages

– Study of types and type systems

#3

Lambda Background

• Developed in 1930’s by Alonzo Church

• Subsequently studied by many people
– Still studied today!

• Considered the “testbed” for procedural and 
functional languages
– Simple

– Powerful

– Easy to extend with new features of interest

– Lambda:PL :: Turning Machine:Complexity

– Somewhat like a crowbar …

“Whatever the next 700 languages turn out to be, 
they will surely be variants of lambda calculus.”

(Landin ’66)
#4

Lambda Syntax

• The λ-calculus has 3 kinds of expressions (terms)

e ::= x Variables

| λx. e Functions (abstractions)

| e1 e2 Application

• λx. e is a one-argument anonymous function with 
body e

• e1 e2 is a function application

• Application associates to the left
x y z === (x y) z

• Abstraction extends far to the right 
λx. x λy. x y z === λx. (x [λy. {(x y) z}])

#5

Why Should I Care?
• A language with 3 expressions? Woof!

• Li and Zdancewic. Downgrading policies and 
relaxed noninterference. POPL ’05
– Just one example of a recent PL/security paper

#6

Lambda Celebrity Representative
• Milton Friedman?

• Morgan Freeman?

• C. S. Friedman?
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#7

Gordon Freeman

• Best-selling PC FPS to date …

#8

Examples of Lambda Expressions

• The identity function:

I =def λx. x

• A function that, given an 
argument y, discards it and 
yields the identity function:

λy. (λx. x)

• A function that, given an 
function f, invokes it on the 
identity function: 

λf. f (λx. x)
“There goes our 

grant money.”

#9

Scope of Variables

• As in all languages with variables, it is 

important to discuss the notion of scope

– The scope of an identifier is the portion of a 

program where the identifier is accessible

• An abstraction λx. E binds variable x in E

– x is the newly introduced variable

– E is the scope of x (unless x is shadowed)

– We say x is bound in λx. E

– Just like formal function arguments are bound in 

the function body

#10

Free and Bound Variables

• A variable is said to be free in E if it has 
occurrences that are not bound in E

• We can define the free variables of an 
expression E recursively as follows:
– Free(x) = {x}

– Free(E1 E2) = Free(E1) ∪ Free(E2)

– Free(λx. E) = Free(E) – {x}

• Example: Free(λx. x (λy. x y z)) = {z}

• Free variables are (implicitly or explicitly) 
declared outside the expression

#11

Free Your Mind!

• Just as in any language with statically-nested 

scoping we have to worry about variable 

shadowing

– An occurrence of a variable might refer to 

different things in different contexts

• Example in IMP with locals: 

let x = 5 in x + (let x = 9 in x) + x

• In λ-calculus:

λx. x (λx. x) x

#12

Renaming Bound Variables

• λ-terms that can be obtained from one another by 

renaming bound variables are considered identical

• This is called α-equivalence

• Renaming bound vars is called α-renaming

• Ex: λx. x is identical to λy. y and to λz. z

• Intuition:

– By changing the name of a formal argument and all of its 

occurrences in the function body, the behavior of the 

function does not change

– In λ-calculus such functions are considered identical
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#13

Make It Easy On Yourself
• Convention: we will always try to rename 

bound variables so that they are all unique

– e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x

• This makes it easy to see the scope of 

bindings and also prevents confusion!

#14

Substitution

• The substitution of F for x in E (written [F/x]E)

– Step 1. Rename bound variables in E and F so they are 

unique

– Step 2. Perform the textual substitution of f for X in E

• Called capture-avoiding substitution

• Example: [y (λx. x) / x] λy. (λx. x) y x

– After renaming: [y (λx. x) / x] λz. (λu. u) z x

– After substitution: λz. (λu. u) z (y (λx. x))

• If we are not careful with scopes we might get: 

λy. (λx. x) y (y (λx. x))   ← wrong!

#15

The deBruijn Notation
• An alternative syntax that avoids naming of bound 

variables (and the subsequent confusions)

• The deBruijn index of a variable occurrence is that 
number of lambda that separate the occurrence 
from its binding lambda in the abstract syntax tree

• The deBruijn notation replaces names of 
occurrences with their deBruijn indices

• Examples:
– λλλλ x. x λλλλ. 0
– λλλλ x. λλλλ x. x λλλλ. λλλλ. 0
– λλλλ x. λλλλ y. y λλλλ. λλλλ. 0
– (λλλλ x. x x) (λλλλ z. z z) (λλλλ. 0 0) (λλλλ. 0 0)
– λλλλ x. (λλλλ x. λλλλ y. x) x λλλλ. (λλλλ. λλλλ. 1) 0 

Identical terms

have identical

representations!

#16

Combinators
• A λ-term without free variables is closed or a 

combinator

• Some interesting combinators:

I = λ x. x

K = λ x. λ y. x

S = λ f. λ g. λ x. f x (g x)

D = λ x. x x

Y = λ f. (λ x. f (x x)) (λ x. f (x x))

• Theorem: any closed term is equivalent to one 
written with just S, K and I
– Example: D =β S I I

– (we’ll discuss this form of equivalence later)

#17

Informal Semantics

• We consider only closed terms

• The evaluation of

(λ x. e) f

– Binds x to f

– Evaluates e with the new binding

– Yields the result of this evaluation

• Like a function call, or like “let x = f in e”

• Example:

(λ f. f (f e)) g evaluates to g (g e)

#18

Operational Semantics
• Many operational semantics for the λ-calculus

• All are based on the equation

(λλλλ x. e) f =ββββ [f/x]e
usually read from left to right

• This is called the β-rule and the evaluation step a 
β-reduction

• The subterm (λ x. e) f is a β-redex
• We write e →β g to say that e β-reduces to g in one 

step

• We write e →β
* g to say that e β-reduces to g in 0 

or more steps
– Remind you of the small-step opsem term rewriting?
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#19

Examples of Evaluation
• The identity function:

(λλλλ x. x) E →→→→ [E / x] x = E

• Another example with the identity:

(λλλλ f. f (λλλλ x. x)) (λλλλ x. x) →→→→

[λλλλ x. x / f] f (λλλλ x. x)) = 

[λλλλ x. x / f] f (λλλλ y. y)) = 

(λλλλ x. x) (λλλλ y. y) →→→→

[λλλλ y. y / x] x = λλλλ y. y 

• A non-terminating evaluation:

(λλλλ x. xx) (λλλλ y. yy) →→→→

[λλλλ y. yy / x] xx = (λλλλ y. yy) (λλλλ y. yy) →→→→ …

• Try T T, where T = λx. x x x 

#20

Evaluation and the Static Scope

• The definition of substitution guarantees 

that evaluation respets static scoping:

(λ x. (λ y. y x)) (y (λ x. x)) →β λ z. z (y (λ v. v))

(y remains free, i.e., defined externally)

• If we forget to rename the bound y:

(λ x. (λ y. y x)) (y (λ x. x)) →β
* λ y. y (y (λ v. v))

(y was free before but is bound now)

#21

Another View of Reduction

• The application 

• Becomes:

(terms can grow substantially through β-reduction!)

e

x x x g

λ x. e

e

g g g

I am g!

Not one g, 

but three!

#22

Normal Forms

• A term without redexes is in normal form

• A reduction sequence stops at a normal form

• If e is in normal form and e →β
* f then e is 

identical to f

• K = λ x. λ y. x is in normal form

• K I is not in normal form

#23

Nondeterministic Evaluation

• We define a small-step reduction relation

• This is a non-deterministic semantics

• Note that we evaluate under λ (where?)

(λ x. e) f → [f/x]e

λ x. e → λ x. f

e → f

e1 f → e2 f

e1 → e2

e f1 → e f2

f1 → f2

#24

Lambda Calculus Contexts

• Define contexts with one hole

• H ::= • | λ x. H | H e | e H

• Write H[e] to denote the filling of the hole in 

H with the expression e

• Example:

H = λ x. x • H[λ y. y] = λ x. x (λ y. y)

• Filling the hole allows variable capture!

H = λ x. x • H[x] = λ x. x x
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#25

Contextual Opsem

• Contexts allow concise formulations of 
congruence rules (application of local 
reduction rules on subterms)

• Reduction occurs at a β-redex that can be 
anywhere inside the expression

• The latter rule is called a congruence or 
structural rule

• The above rules to not specify which redex
must be reduced first

(λ x. e) f → [f/x]e H[e] → H[f]

e → f

#26

The Order of Evaluation

• In a λ-term there could be more than one 

instance of (λ x. e) f, as in:

(λ y. (λ x. x) y) E

– Could reduce the inner or outer λ

– Which one should we pick?
(λλλλ y. (λλλλ x. x) y) E

inner outer 

(λλλλ y. [y/x] x) E = (λλλλ y. y) E [E/y] (λλλλ x. x) y = (λλλλ x. x) E

E

#27

The Diamond Property

• A relation R has the diamond property if 

whenever e R e1 and e R e2 then there exists 

e3 such that e1 R e3 and e2 R e3

• →β does not have the diamond property

• →β
* has the diamond property

• Also called the confluence property

E
R R

e1 e2

R R
E3

#28

A Diamond In The Rough

• Languages defined by non-deterministic sets 
of rules are common
– Logic programming languages

– Expert systems

– Constraint satisfaction systems
• And thus most pointer analyses …

– Dataflow systems

– Makefiles

• It is useful to know whether such systems 
have the diamond property

#29

(Beta) Equality

• Let =β be the reflexive, transitive and 
symmetric closure of →β

=ββββ is (→→→→ββββ ∪∪∪∪ ←←←←ββββ)
*

• That is, e =β f if e converts to f via a 
sequence of forward and backward →β

• •

e • f

#30

The Church-Rosser Theorem

• If e1 =β e2 then there exists e3 such that e1

→β
* e3 and e2 →β

* e3

• •

e1 • e2

• •

e3

• Proof (informal): apply the diamond property 
as many times as necessary
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#31

Corollaries

• If e1 =β e2 and e1 and e2 are normal forms 

then e1 is identical to e2

– From C-R we have ∃e3. e1 →β
* e3 and e2 →β

* e3

– Since e1 and e2 are normal forms they are 

identical to e3

• If e →β
* e1 and e →β

* e2 and e1 and e2 are 

normal forms then e1 is identical to e2

– “All terms have a unique normal form.”

#32

Evaluation Strategies

• Church-Rosser theorem says that independent of 
the reduction strategy we will find �1 normal form

• But some reduction strategies might find 0

• (λ x. z) ((λ y. y y) (λ y. y y)) →

(λ x. z) ((λ y. y y) (λ y. y y)) → …

• (λ x. z) ((λ y. y y) (λ y. y y)) → z

• There are three traditional strategies

– normal order (never used, always works)

– call-by-name (rarely used, cf. TeX)

– call-by-value (amazingly popular)

#33

Civilization: Call By Value
• Normal Order

– Evaluates the left-most redex not contained in another 
redex

– If there is a normal form, this finds it

– Not used in practice: requires partially evaluating 
function pointers and looking “inside” functions

• Call-By-Name (“lazy”)
– Don’t reduce under λ, don’t evaluate a function 

argument (until you need to)

– Does not always evaluate to a normal form

• Call-By-Value (“eager” or “strict”)
– Don’t reduce under λ, do evaluate a function’s argument 

right away

– Finds normal forms less often than the other two

#34

Endgame

• This time: λ syntax, 
semantics, reductions, 

equality, …

• Next time: encodings, real 

prorams, type systems, 

and all the fun stuff!

Wisely done, Mr. 

Freeman. I will see 

you up ahead. 

#35

Homework

• Project Proposal Due Two Days Ago …

• Read Leroy article, think about axiomatic

• Homework 5 Due Later

#36

Tricksy On The Board Answer
• Is this rule unsound? 

• Nope: it’s our basic rule plus 2x consequence

• Note that Bthen ⇒ Bthen ∨ Belse

⊢ {A} if p then cthen else celse {Bthen ∨ Belse}

⊢ {A ∧ ¬p} celse {Belse}⊢ {A ∧ p} cthen {Bthen}

⊢ {A} if p then c1 else c2 {B}

⊢ {A ∧ p} c1 {B}    ⊢ {A ∧ ¬ p} c2 {B}

⊢ {A’} c {B’}

⊢ A’ ⇒ A   ⊢ {A} c {B}   ⊢ B ⇒ B’


