Lambda Calculus

A

1 READ THIS \ WHAT DID YOU THINK IT REAUN MADE ME SEE THINGS
LIBRARY BOOK | oF (T?
Y GOT ME.

IM SLAD You }
ENJOYED IT,

175 COMPLICATING
MY LIFE. DONT
GET ME AN{ MORE

1 DIFFERENTLY. (TS GWEN ME
A LOT TO THINK ABQUT.

Plan

« Introduce lambda calculus
- Syntax
- Substitution
- Operational Semantics (... with contexts!)
- Evaluations strategies
- Equality
- Later:
- Relationship to programming languages
- Study of types and type systems

= 2]
Lambda Background Lambda Syntax
« Developed in 1930’s by Alonzo Church » The X\-calculus has 3 kinds of expressions (terms)
« Subsequently studied by many people ew=x Variables .
- Still studied today! | Ax.e Functions (abstractions)
+ Considered the “testbed” for procedural and | e e Application
fur;;tlolnal languages « AX. e is a one-argument anonymous function with
- Jimple body e
- Powerful Y is a i ; licati
- Easy to extend with new features of interest & e.Z 1S ‘j" unct10|.1 application
- Lambda:PL :: Turning Machine:Complexity « Application associates to the left
- Somewhat like a crowbar ... Xyz===(Xy)z
“Whatever the next 700 languages turn out to be, « Abstraction extends far to the right
they will surely be variants of lambda ca(ch:r:z?n) 2X. XAy, Xy Z === Ax. (X [hy. {(xy) Z3])
#3] #a
Why Should | Care?))
« A language with 3 expressions? Woof! Lambda Celebr]ty Representat]ve
« Li and Zdancewic. Downgrading policies and e Milton Friedman?
relaxed noninterference. POPL *05
- Just one example of a recent PL/security paper » Morgan Freeman?
4. LOCAL DOWNGRADING POLICIES Tkm:r e . C. S. Friedman?
41 Label Definition Phm=mer) ; g i
Definition 4.1.1 (The policy language). In Figure 1. —g i ::1‘ i :;’] : Q-svam
Types Tu= int|T—T Thmi=ma:7 Tkma=ms:7
Constants = C TEmi=msii Q-TRaNS
Operators e
%)uxl’m:\y mi= Naitm [el elm@m Fooimbmi=ms:m o
T e (] 62D TF e = e =
Figure 1: Li, Label Syntax [Emy=ma
The core of the policy Tang 2 variant of the sinph- Dhmyms =mg my:7 A
typed A-calculus with a base typ ary operators and con-
stants. A downgrading policy A-term that specifies T'kmy=ms:int
how an integer can be downgraded: when this A-term is ap- Tilsns]S i Q-Bivop
plied to the annotated integer, the result becomes public. A T Fmy @ ms =ms@mg:int 45

Gordon Freeman

Examples of Lambda Expressions

 The identity function:
| =4ef AX. X
« A function that, given an
argument y, discards it and
yields the identity function:
Ay. (AX. X)
« A function that, given an

function f, invokes it on the
identity function:

Af. f (AX. Xx)

“There goes our
grant money.”

Scope of Variables

« As in all languages with variables, it is
important to discuss the notion of scope
- The scope of an identifier is the portion of a

program where the identifier is accessible

e An abstraction Ax. E binds variable x in E
- x is the newly introduced variable
- E is the scope of x
- We say x is bound in Ax. E

- Just like formal function arguments are bound in
the function body

(unless x is shadowed)

#9

Free and Bound Variables

A variable is said to be free in E if it has
occurrences that are not bound in E

» We can define the free variables of an
expression E recursively as follows:
- Free(x) = {x}
- Free(E, E,) = Free(E,) U Free(E,)
- Free(Ax. E) = Free(E) - {x}

o Example: Free(Ax. x (Ly. xy z)) = {z}

« Free variables are (implicitly or explicitly)
declared outside the expression

Free Your Mind!

 Just as in any language with statically-nested
scoping we have to worry about variable

shadowing
- An occurrence of a variable might refer to
different things in different contexts

» Example in IMP with locals:
letx=5inx+ (let x=9in x) + x
* In A-calculus:
AX. X (AX. X) X

Renaming Bound Variables

A-terms that can be obtained from one another by
renaming bound variables are considered identical
This is called a-equivalence

Renaming bound vars is called o-renaming

o Ex: Ax. x is identical to Ay. y and to Az. z

« Intuition:

- By changing the name of a formal argument and all of its
occurrences in the function body, the behavior of the
function does not change

- In A-calculus such functions are considered identical

Make It Easy On Yourself
» Convention: we will always try to rename
bound variables so that they are all unique
- e.g., write Ax. x (Ly.y) x instead of Ax. x (AX.X) X

 This makes it easy to see the scope of
bindings and also prevents confusion!

WHAT DOES IT MEAN
WHEN SOMECNE SAYS

TO "GNE T THE K
OL' COLLEGE TRY' ? N

IT MEANS YOU JOIN YOUR FRIENDS,
GET SOME CHEAP BEER, ORDER A
PIZZA, AND FORGET

AROUT TOMORROW

THAT'S Not WHERE DD
WHAT T MEANS!] YOV GO T
COLLESE?

[NERR

Substitution

The substitution of F for x in E (written [F/x]E)
- Step 1. Rename bound variables in E and F so they are
unique

- Step 2. Perform the textual substitution of f for X in E

Called capture-avoiding substitution

Example: [y (Ax. x) / x] Ly. (AX. X) y X

- After renaming: [y (Ax. x) / x] Az. (Au. u) z X

- After substitution: Az. (Au. u) z (y (Ax. X))

If we are not careful with scopes we might get:
AY. (. x)y (y (Ax. X)) <« wrong!

The deBruijn Notation

« An alternative syntax that avoids naming of bound
variables (and the subsequent confusions)

» The deBruijn index of a variable occurrence is that
number of lambda that separate the occurrence
from its binding lambda in the abstract syntax tree

« The deBruijn notation replaces names of
occurrences with their deBruijn indices

« Examples:
- AX. X 2.0 Identical terms
have identical
: ;i ;;)y(; ; 8 representations!
- (AX.xx)(Az.z2) (A.00) (A.00)
- AX. (AX AY. X)X A.(A. A 1)0

Combinators

A A-term without free variables is closed or a
combinator

Some interesting combinators:

| =L X. X

K =AX.AY. X

S =Af.Ag. Ax fx(gx)
D =L X. XX

Y =irf. (A x. f(xx)) (Ax.f(xx))
Theorem: any closed term is equivalent to one
written with just S, K and |

- Example: D=, S 11
- (we’ll discuss this form of equivalence later)

Informal Semantics

» We consider only closed terms
» The evaluation of
(Ax.e)f
- Binds x to f
- Evaluates e with the new binding
- Yields the result of this evaluation

« Like a function call, or like “let x = f in e”
o Example:
(A f. f(fe)) g evaluatesto g (g e)

Operational Semantics

Many operational semantics for the A-calculus
All are based on the equation
(A x. e) f =; [f/x]e
usually read from left to right
This is called the B-rule and the evaluation step a

3-reduction
The subterm (A x. e) f is a B-redex

V:e write e —; g to say that e B-reduces to g in one
step

We write e —;" g to say that e B-reduces to gin 0
or more steps

- Remind you of the small-step opsem term rewriting?

Examples of Evaluation

The identity function:
(Ax.x)E-[E/x]x=E
« Another example with the identity:
(Af. f (A x. x)) (AX.X)—>
[Ax. x/f]1f (X x))=
[Ax.x/flf(Ay.y)) =
AXx.x)(Ay.y)—
[Ay.y/Xx]x=Ay.y
« A non-terminating evaluation:
(A x. xx) (Ay.yy) =
[Ay.yy/xIxx=(@Ay.yy) Ay.yy) = ..
e Try TT, where T =2x. X X X

.

Evaluation and the Static Scope

» The definition of substitution guarantees
that evaluation respets static scoping:
AXo Ay yx) (Y (A x. X)) =5 AZ.Z(y (A V.V))

(y remains free, i.e., defined externally)

« If we forget to rename the bound y:
(A xc Ly yx) (y (A x. X)) =" Ay y (v (R v.v))

(y was free before but is bound now)

(terms can grow substantially through B-reduction!)

Normal Forms

» A term without redexes is in normal form
« A reduction sequence stops at a normal form

o If e is in normal form and e —;" f then e is
identical to f

e K= X.Ay.xisinnormal form
e K |is not in normal form

#21] #22]
Nondeterministic Evaluation Lambda Calculus Contexts
» We define a small-step reduction relation « Define contexts with one hole
m T eH:i:=e |AX.H|He | eH
X. X
o= € L f » Write H[e] to denote the filling of the hole in
€178 171 H with the expression e
e f—oef ef,—sef,
o Example:
e—~f
x| .|.'|=7»X.Xo H[ky.yJ=kx.x(ky.y)
« This is a non-deterministic semantics « Filling the hole allows variable capture!
« Note that we evaluate under % (where?) H=%x.xe H[x]=21x xXx
#23] #24]

Contextual Opsem

» Contexts allow concise formulations of
congruence rules (application of local
reduction rules on subterms)

» Reduction occurs at a -redex that can be
anywhere inside the expression

» The latter rule is called a congruence or
structural rule

» The above rules to not specify which redex
must be reduced first

The Order of Evaluation

e In a A-term there could be more than one
instance of (A x. e) f, as in:

(Ay. (Ax.x)y)E
- Could reduce the inner or outer A
- Which one should we pick?
(Ay. (Ax.x)y)E
inner outer
(Ay. [y/x]x)E=(Ay.y)E [E/y] Ax.x)y = (AX. x) E

The Diamond Property

« A relation R has the diamond property if
whenever e R e, and e R e, then there exists
e, such that e, Re;and e, R e,

€] 2

+ — does not have the diamond property
+ —* has the diamond property
» Also called the confluence property

A Diamond In The Rough

» Languages defined by non-deterministic sets
of rules are common
- Logic programming languages
- Expert systems
- Constraint satisfaction systems
« And thus most pointer analyses ...
- Dataflow systems
- Makefiles
« It is useful to know whether such systems
have the diamond property

(Beta) Equality

 Let =, be the reflexive, transitive and
symmetric closure of —,

=5 is (=g U ‘_B)*

« That is, e = f if e converts to f via a
sequence of forward and backward —

NN

The Church-Rosser Theorem

* If e; =; e, then there exists e; such that e,
—g e;and e, —; €

e e TN
o N
o

« Proof (informal): apply the diamond property
as many times as necessary

#30]

Corollaries

« If e, =; e, and e, and e, are normal forms
then e, is identical to e,
- From C-R we have Je;. e; —; e;and e, —; e,
- Since e, and e, are normal forms they are
identical to e,

«Ife -, e ande —; e,and e; and e, are
normal forms then e, is identical to e,
- “All terms have a unique normal form.”

Evaluation Strategies

» Church-Rosser theorem says that independent of
the reduction strategy we will find <1 normal form

« But some reduction strategies might find 0
Ax.z) (Ay.yy) Ly.yY)) —
X z) (LY. YY) (LY. VYY) = ..
(Ax.z) (Ay.yy)(Ly.yV)) =z
» There are three traditional strategies
- normal order (never used, always works)

- call-by-name (rarely used, cf. TeX)
- call-by-value (amazingly popular)

Civilization: Call By Value

e Normal Order

- Evaluates the left-most redex not contained in another
redex

- If there is a normal form, this finds it
- Not used in practice: requires partially evaluating
function pointers and looking “inside” functions
 Call-By-Name (“lazy”)
- Don’t reduce under %, don’t evaluate a function
argument (until you need to)
- Does not always evaluate to a normal form
« Call-By-Value (“eager” or “strict”)
- Don’t reduce under A, do evaluate a function’s argument
right away
- Finds normal forms less often than the other two

Endgame

« This time: A syntax,
semantics, reductions,
equality, ...

Next time: encodings, real
prorams, type systems,
and all the fun stuff!

Wisely done, Mr.
Freeman. | will see
you up ahead.

» Project Proposal Dué Two Days Ago ...
* Read Leroy articlef#hink:about axiomatic
« Homework 5 Duédater

Tricksy On The Board Answer

e Is this rule unsound?
F {A A p} Cthen {Bthen} F {A A _‘p} Celse {Belse}

= {A}if p then ¢, else C... {Bnen V Beise}
» Nope: it’s our basic rule plus 2x consequence
F{AAPc {B} F{AA-PIc,{B}
 {A} if p then ¢, else ¢, {B}
FA=A F{A}c{B} -B=PB
- {A} c {B}

 Note that By, = B V B

else

