

Wei Hu Memorial Homework Award

• Many turned in HW3 code like this:

let rec matches re s = match re with | Star(r) -> union (singleton s)

(matches (Concat(r,Star(r))) s)

• Which is a direct translation of:

$$R[r^*]s = \{s\} \cup R[rr^*]s$$

or, equivalently:

 $R[r^*]s = \{s\} \cup \{ y \mid \exists x \in R[r]s \land y \in R[r^*]x \}$

• Why doesn't this work?

Forward VC Gen Intuition

• Consider the sequence of assignments

$$x_1 := e_1; x_2 := e_2$$
• The VC(c, B) = $[e_1/x_1]([e_2/x_2]B)$
= $[e_1/x_1, e_2[e_1/x_1]/x_2] B$

- We can compute the substitution in a forward way using symbolic execution (aka symbolic evaluation)
 - Keep a symbolic state that maps variables to expressions
 - Initially, $\Sigma_0 = \{ \}$
 - After \textbf{x}_1 := $\textbf{e}_1,~\Sigma_1$ = { $\textbf{x}_1 \rightarrow \textbf{e}_1$ }
 - After $x_2 := e_2$, $\Sigma_2 = \{x_1 \rightarrow e_1, x_2 \rightarrow e_2[e_1/x_1] \}$
 - Note that we have applied Σ_1 as a substitution to righthand side of assignment $x_2 := e_2$

Simple Assembly Language

• Consider the language of instructions:

- The "inv e" instruction is an annotation
 - Says boolean expression e holds at that point
- Each function f() comes with Pre, and Post, annotations (pre- and post-conditions)
- New Notation (yay!): Ik is the instruction at address k

Symex States

• We set up a symbolic execution state:

 $\Sigma: \mathsf{Var} \to \mathsf{SymbolicExpressions}$

= the symbolic value of x in state Σ $\Sigma(x)$

 $\Sigma[x:=e]$ = a new state in which x's value is e

• We use states as substitutions:

 Σ (e) - obtained from e by replacing x with Σ (x)

• Much like the opsem so far ...

Symex Invariants

- The symbolic executor tracks invariants
- A new part of symex state: Inv ⊆ {1...n}
- If $k \in Inv$ then I_k is an invariant instruction that we have already executed
- Basic idea: execute an inv instruction only twice:
 - The first time it is encountered
 - Once more time around an arbitrary iteration

Symex Rules • Define a VC function as an interpreter: $VC: \underline{Address} \times SymbolicState \times InvariantState \rightarrow Assertion$ $VC(L, \Sigma, Inv)$ $e \Rightarrow VC(L, \Sigma, Inv)$ if I_k = if e goto L $e \Rightarrow VC(k+1, \Sigma, Inv)$ VC(k+1, Σ [x:= Σ (e)], Inv) if $I_k = x := e$ $\Sigma(\mathsf{Post}_{\mathsf{current-function}})$ if I_k = return $VC(k, \Sigma, Inv) =$ $\Sigma(Pre_f) \wedge$ $\forall a_1...a_m.\Sigma'(Post_f) \Rightarrow$ $VC(k+1, \Sigma', Inv)$ if $I_k = f()$ (where y_1 , ..., y_m are modified by f) and $a_1,\,...,\,a_m$ are fresh parameters

and $\Sigma' = \Sigma[y_1 := a_1, ..., y_m := a_m]$

Symex Invariants (2a)

Two cases when seeing an invariant instruction:

- 1. We see the invariant for the first time
 - $I_k = inv e$
 - k ∉ Inv (= "not in the set of invariants we've seen")
 - Let $\{y_1, ..., y_m\}$ = the variables that could be modified on a path from the invariant back to itself
 - Let a_1 , ..., a_m be fresh new symbolic parameters

 $VC(k, \Sigma, Inv) =$

$$\begin{split} \Sigma(e) \, \wedge \, \forall a_1...a_m. \, \Sigma'(e) &\Rightarrow VC(k+1, \, \Sigma', \, Inv \cup \{k\}]) \\ \text{with } \Sigma' &= \Sigma[y_1 := a_1, \, ..., \, y_m := a_m] \end{split}$$

(like a function call)

Symex Invariants (2b)

- 2. We see the invariant for the second time
 - $I_{k} = inv E$
 - k∈Inv

 $VC(k, \Sigma, Inv) = \Sigma(e)$

(like a function return)

- Some tools take a more simplistic approach
 - Do not require invariants
 - Iterate through the loop a fixed number of times
 - PREfix, versions of ESC (DEC/Compaq/HP SRC)
 - Sacrifice completeness for usability

Where Are We?

- Axiomatic Semantics: the meaning of a program is what is true after it executes
- Hoare Triples: {A} c {B}
- Weakest Precondition: { WP(c,B) } c {B}
- Verification Condition: A⇒VC(c,B)⇒WP(c,b)
 - Requires Loop Invariants
 - Backward VC works for structured programs
 - Forward VC (Symbolic Exec) works for assembly
 - Here we are today ...

Today's Cunning Plan

- Symbolic Execution & Forward VCGen
- Handling Exponential Blowup
 - Invariants
 - Dropping Paths
- VCGen For Exceptions (double trouble)
- VCGen For Memory
- (McCarthyism)
- VCGen For Structures
- (have a field day)
- VCGen For "Dictator For Life"

Symex Summary

- Let $\mathbf{x_1}, \, ..., \, \mathbf{x_n}$ be all the variables and $\mathbf{a_1}, \, ..., \, \mathbf{a_n}$ fresh parameters
- Let Σ_0 be the state $[x_1 := a_1, ..., x_n := a_n]$
- Let Ø be the empty Inv set
- For all functions f in your program, prove:

 $\forall a_1...a_n. \ \Sigma_0(\mathsf{Pre}_\mathsf{f}) \Rightarrow \mathsf{VC}(\mathsf{f}_{\mathsf{entry}}, \ \Sigma_0, \ \varnothing)$

- If you start the program by invoking any f in a state that satisfies Pre_f, then the program will execute such that
 - At all "inv e" the e holds, and
 - If the function returns then $\operatorname{Post}_{\mathsf{f}}$ holds
- Can be proved w.r.t. a real interpreter (operational semantics)
- Or via a proof technique called co-induction (or, assume-guarantee)

#12

Forward VCGen Example

• Consider the program

x := x + 1 goto Loop

End: return Postconditon: x = 6

Forward VCGen Example (2)

 $\forall x.$ $x \le 0 \Rightarrow$ $x \le 6 \land \\ \forall x'.$ $(x' \le 6 \Rightarrow$ $x' > 5 \Rightarrow x' = 6$ $x' \le 5 \Rightarrow x' + 1 \le 6)$

 VC contains both <u>proof obligations</u> and assumptions about the control flow

VCs Can Be Large

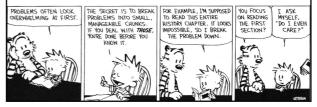
- Consider the sequence of conditionals
 - (if x < 0 then x := -x); (if $x \le 3$ then x += 3)
 - With the postcondition P(x)
- The VC is

 $\begin{array}{lll} x < 0 & \Lambda \cdot x \leq 3 & \Rightarrow P(\cdot x + 3) & \Lambda \\ x < 0 & \Lambda \cdot x > 3 & \Rightarrow P(\cdot x) & \Lambda \\ x \geq 0 & \Lambda & x \geq 3 & \Rightarrow P(x + 3) & \Lambda \\ x \geq 0 & \Lambda & x \geq 3 & \Rightarrow P(x) & \Lambda \end{array}$

- There is one conjunct for each path
 - ⇒ exponential number of paths!
 - Conjuncts for infeasible paths have un-satisfiable guards!
- Try with $P(x) = x \ge 3$

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?



VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Standard Solutions:
 - Allow invariants even in straight-line code
 - And thus do not consider all paths independently!

Invariants in Straight-Line Code

- Purpose: modularize the verification task
- Add the command "after c establish Inv"
 - Same semantics as c (Inv is only for VC purposes) $VC(after\ c\ establish\ Inv,\ P) =_{def}$

 $VC(c,Inv) \wedge \forall x_i. Inv \Rightarrow P$

- where x_i are the ModifiedVars(c)
- Use when c contains many paths

after if x < 0 then x := -x establish $x \ge 0$; if $x \le 3$ then x += 3 { P(x) }

• VC is now:

$$\begin{split} &(x<0\Rightarrow -x\geq 0)\;\wedge\;\;(x\geq 0\Rightarrow x\geq 0)\;\wedge\\ &\forall x.\;x\geq 0\Rightarrow (x\leq 3\Rightarrow P(x+3)\;\wedge\;\;x>3\Rightarrow P(x)) \end{split}$$

#18

Dropping Paths

- In absence of annotations, we can drop some paths
- VC(if E then c₁ else c₂, P) = choose one of
 - $E \Rightarrow VC(c_1, P) \land \neg E \Rightarrow VC(c_2, P)$ (drop no paths) (drops "else" path!) (drops "then" path!) - $E \Rightarrow VC(c_1, P)$
- We sacrifice soundness! (we are now unsound)
 - No more guarantees

 $\neg E \Rightarrow VC(c_2, P)$

- Possibly still a good debugging aid
- · Remarks:
 - A recent trend is to sacrifice soundness to increase usability (e.g., Metal, ESP, even ESC)
 - The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)

VCGen for Exceptions

- · We extend the source language with exceptions without arguments (cf. HW2):
 - throws an exception - throw
 - try c₁ catch c₂ executes c₂ if c₁ throws
- Problem:
 - We have non-local transfer of control
 - What is VC(throw, P)?

VCGen for Exceptions

- · We extend the source language with exceptions without arguments (cf. HW2):
 - throw
- throws an exception
- executes c2 if c1 throws - try c₁ catch c₂
- Problem:
 - We have non-local transfer of control
 - What is VC(throw, P)?
- Standard Solution: use 2 postconditions
 - One for <u>normal termination</u>
 - One for exceptional termination

VCGen for Exceptions (2)

- VC(c, P, Q) is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q
- Rules

VC(skip, P, Q) = P

 $VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)$

VC(throw, P, Q) = Q

 $VC(try c_1 catch c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q))$

 $VC(try c_1 finally c_2, P, Q) = ?$

VCGen Finally

· Given these:

 $VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)$ $VC(try c_1 catch c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q))$

Finally is somewhat like "if":

 $VC(try c_1 finally c_2, P, Q) =$ $VC(c_1, VC(c_2, P, Q), true)$ $VC(c_1, true, VC(c_2, \mathbf{Q}, \mathbf{Q}))$

Which reduces to:

 $VC(c_1, VC(c_2, P, Q), VC(c_2, Q, Q))$

Hoare Rules and the Heap

· When is the following Hoare triple valid?

 $\{A\} *x := 5 \{ *x + *y = 10 \}$

- A should be "*y = 5 or x = y"
- The Hoare rule for assignment would give us:
 - [5/*x](*x + *y = 10) = 5 + *y = 10 =
 - *y = 5 (we lost one case)
- · Why didn't this work?

Handling The Heap

- We do not yet have a way to talk about memory (the heap, pointers) in assertions
- Model the state of memory as a symbolic mapping from addresses to values:
 - If A denotes an address and M is a memory state
 - sel(M,A) denotes the contents of the memory
 - upd(M,A,V) denotes a new memory state obtained from M by writing V at address A

More on Memory

- We allow variables to range over memory states
 - We can quantify over all possible memory states
- Use the special pseudo-variable μ (mu) in assertions to refer to the current memory
- Example:

```
\forall i. \ i \geq 0 \land i < 5 \Rightarrow sel(\mu, A + i) > 0
says that entries 0..4 in array A are positive
```

Hoare Rules: Side-Effects

- To model writes we use memory expressions
 - A memory write changes the value of memory

$$\{ B[upd(\mu, A, E)/\mu] \} *A := E \{B\}$$

- Important technique: treat memory as a whole
- · And reason later about memory expressions with inference rules such as (McCarthy Axioms, ~'67):

```
if A_1 = A_2
sel(upd(M, A_1, V), A_2) =
                            sel(M, A_2) if A_1 \neq A_2
```

Memory Aliasing

- Consider again: { A } *x := 5 { *x + *y = 10 }
- We obtain:

```
A = [upd(\mu, x, 5)/\mu] (*x + *y = 10)
      = [\text{upd}(\mu, x, 5)/\mu] (sel(\mu, x) + sel(\mu, y) = 10)
(1) = sel(upd(\mu, x, 5), x) + sel(upd(\mu, x, 5), y) = 10
      = 5 + sel(upd(\mu, x, 5), y) = 10
      = if x = y then 5 + 5 = 10 else 5 + sel(\mu, y) = 10
(2) = x = y or y = 5
```

- Up to (1) is theorem generation
- From (1) to (2) is theorem proving

Alternative Handling for Memory

- Reasoning about aliasing can be expensive
 - It is NP-hard (and/or undecideable)
- Sometimes completeness is sacrificed with the following (approximate) rule:

$$sel(upd(M,\ A_1,\ V),\ A_2) = \begin{cases} V & \text{if } A_1 = (obviously)\ A_2\\ sel(M,\ A_2) & \text{if } A_1 \neq (obviously)\ A_2\\ P & \text{otherwise (p is a fresh new parameter)} \end{cases}$$

- · The meaning of "obviously" varies:
 - The addresses of two distinct globals are ≠
 - The address of a global and one of a local are ≠
- PREfix and GCC use such schemes

VCGen Overarching Example

```
    Consider the program
```

```
- Precondition: B : bool ∧ A : array(bool, L)
1: I := 0
  R := B
3: inv I \ge 0 \land R: bool
  if I \ge L goto 9
  assert saferd(A + I)
  T := *(A + I)
  1 := 1 + 1
  R := T
  goto 3
9: return R
 Postcondition: R: bool
```

5

VCGen Overarching Example

```
\begin{array}{l} \forall A.\ \forall B.\ \forall L.\ \forall \mu\\ B:bool\ \land\ A:array(bool,\ L)\Rightarrow\\ 0\geq 0\ \land\ B:bool\ \land\\ \forall I.\ \forall R.\\ I\geq 0\ \land\ R:bool\Rightarrow\\ I\geq L\Rightarrow R:bool\\ \land\\ I< L\Rightarrow saferd(A+I)\ \land\\ I+1\geq 0\ \land\\ sel(\mu,\ A+I):bool \end{array}
```

 VC contains both proof obligations and assumptions about the control flow

Mutable Records - Two Models

- Let r: RECORD { f1 : T1; f2 : T2 } END
- For us, records are reference types
- Method 1: one "memory" for each record
 - One index constant for each field
 - r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)
- Method 2: one "memory" for each field
 - The record address is the index
 - r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)
- Only works in strongly-typed languages like Java
 - Fails in C where &r.f2 = &r + sizeof(T1)

VC as a "Semantic Checksum"

- Weakest preconditions are an expression of the program's semantics:
 - Two equivalent programs have logically equivalent WPs
 - No matter how different their syntax is!
- VC are almost as powerful

VC as a "Semantic Checksum" (2)

 Consider the "assembly language" program to the right

```
x := 4

x := x == 5

assert x : bool

x := not x

assert x
```

- · High-level type checking is not appropriate here
- The VC is: 4 == 5 : bool ∧ not (4 == 5)
- No confusion from reuse of x with different types

Invariance of VC Across Optimizations

- VC is so good at abstracting syntactic details that it is syntactically preserved by many common optimizations
 - Register allocation, instruction scheduling
 - Common subexp elim, constant and copy propagation
 - Dead code elimination
- We have *identical* VCs whether or not an optimization has been performed
 - Preserves syntactic form, not just semantic meaning!
- This can be used to verify correctness of compiler optimizations (Translation Validation)

VC Characterize a Safe Interpreter

- Consider a fictitious "safe" interpreter
 - As it goes along it performs checks (e.g. "safe to read from this memory addr", "this is a null-terminated string", "I have not already acquired this lock")
 - Some of these would actually be hard to implement
- The VC describes all of the checks to be performed
 - Along with their context (assumptions from conditionals)
 - Invariants and pre/postconditions are used to obtain a finite expression (through induction)
- VC is valid ⇒ interpreter never fails
 - We enforce same level of "correctness"
 - But better (static + more powerful checks)

#36

VC Big Picture

- Verification conditions
 - Capture the semantics of code + specifications
 - Language independent
 - Can be computed backward/forward on structured/unstructured code
 - Make Axiomatic Semantics practical

Invariants Are Not Easy

• Consider the following code from QuickSort

```
int partition(int *a, int L<sub>0</sub>, int H<sub>0</sub>, int pivot) {
   int L = L<sub>0</sub>, H = H<sub>0</sub>;
   while(L < H) {
      while(a[L] < pivot) L ++;
      while(a[H] > pivot) H --;
      if(L < H) { swap a[L] and a[H] }
   }
   return L
}</pre>
```

- Consider verifying only memory safety
- What is the loop invariant for the outer loop?

Homework

- Homework 4 Due Thursday
- Read Cousot & Cousot article
- Read Abramski article
- Project Proposal Due In One Week