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#2

Wei Hu Memorial Homework Award

• Many turned in HW3 code like this:

let rec matches re s = match re with

| Star(r) -> union (singleton s) 

(matches (Concat(r,Star(r))) s)

• Which is a direct translation of:

R�r*�s = {s} ∪ R�rr*�s
or, equivalently:

R�r*�s = {s} ∪ { y | ∃x ∈ R�r�s ∧ y ∈ R�r*�x }

• Why doesn’t this work? 

#3

Forward VC Gen Intuition
• Consider the sequence of assignments

x1 := e1; x2 := e2
• The VC(c, B) = [e1/x1]([e2/x2]B)

= [e1/x1, e2[e1/x1]/x2] B

• We can compute the substitution in a forward way 
using symbolic execution (aka symbolic evaluation)
– Keep a symbolic state that maps variables to expressions

– Initially, Σ0 = { }

– After x1 := e1, Σ1 = { x1 → e1 }

– After x2 := e2, Σ2 = {x1 → e1, x2 → e2[e1/x1] }

– Note that we have applied Σ1 as a substitution to right-
hand side of assignment x2 := e2

#4

Simple Assembly Language

• Consider the language of instructions:
I ::= x := e |  f() | if e goto L |  goto L | 

L: | return | inv e

• The “inv e” instruction is an annotation

– Says boolean expression e holds at that point

• Each function f() comes with Pref and Postf
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at 

address k

#5

Symex States

• We set up a symbolic execution state:

Σ : Var→ SymbolicExpressions

Σ(x) = the symbolic value of x in state Σ

Σ[x:=e] = a new state in which x’s value is e

• We use states as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)

• Much like the opsem so far …

#6

Symex Invariants

• The symbolic executor tracks invariants 

passed

• A new part of symex state: Inv ⊆ {1…n}

• If k ∈ Inv then Ik is an invariant instruction 

that we have already executed

• Basic idea: execute an inv instruction only 

twice:

– The first time it is encountered

– Once more time around an arbitrary iteration
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#7

Symex Rules
• Define a VC function as an interpreter:
VC : Address × SymbolicState × InvariantState → Assertion

if Ik = returnΣ(Postcurrent-function)

if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref)    ∧

∀a1..am.Σ’(Postf) ⇒

VC(k+1, Σ’, Inv)

(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
e ⇒ VC(L, Σ, Inv)      ∧

¬ e ⇒ VC(k+1, Σ, Inv)

if Ik = goto LVC(L, Σ,  Inv)

#8

Symex Invariants (2a)

Two cases when seeing an invariant instruction:

1. We see the invariant for the first time

– Ik = inv e

– k ∉ Inv    (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on 

a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) = 

Σ(e) ∧ ∀a1…am. Σ’(e) ⇒ VC(k+1, Σ’, Inv ∪ {k}])

with Σ’ = Σ[y1 := a1, …, ym := am]

(like a function call)

#9

Symex Invariants (2b)

2. We see the invariant for the second time

– Ik = inv E

– k ∈ Inv

VC(k, Σ, Inv) = Σ(e)

(like a function return)

• Some tools take a more simplistic approach

– Do not require invariants

– Iterate through the loop a fixed number of times

– PREfix, versions of ESC (DEC/Compaq/HP SRC)

– Sacrifice completeness for usability

#10

Where Are We?

• Axiomatic Semantics: the meaning of a 

program is what is true after it executes

• Hoare Triples: {A} c {B} 

• Weakest Precondition: { WP(c,B) } c {B}

• Verification Condition: A⇒VC(c,B)⇒WP(c,b)

– Requires Loop Invariants

– Backward VC works for structured programs

– Forward VC (Symbolic Exec) works for assembly

– Here we are today …

#11

Today’s Cunning Plan

• Symbolic Execution & Forward VCGen

• Handling Exponential Blowup

– Invariants

– Dropping Paths

• VCGen For Exceptions (double trouble)

• VCGen For Memory (McCarthyism)

• VCGen For Structures (have a field day)

• VCGen For “Dictator For Life”

#12

Symex Summary
– Let x1, …, xn be all the variables and a1, …, an fresh 
parameters

– Let Σ0 be the state [x1 := a1, …,xn :=an]
– Let ∅ be the empty Inv set

• For all functions f in your program, prove:

∀a1…an. Σ0(Pref) ⇒ VC(fentry, Σ0, ∅)

• If you start the program by invoking any f in a state 
that satisfies Pref, then the program will execute 
such that
– At all “inv e” the e holds, and 

– If the function returns then Postf holds

• Can be proved w.r.t. a real interpreter (operational 
semantics)

• Or via a proof technique called co-induction (or, 
assume-guarantee)
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#13

Forward VCGen Example

•Consider the program

Precondition: x � 0

Loop: inv x � 6 

if x > 5 goto End

x := x + 1

goto Loop

End:  return Postconditon: x = 6
#14

Forward VCGen Example (2)

∀x. 
x � 0 ⇒

x � 6 ∧
∀x’.

(x’ � 6 ⇒
x’ > 5 ⇒ x’ = 6

∧
x’ � 5 ⇒ x’ + 1 � 6 )

• VC contains both proof obligations and 

assumptions about the control flow                              

#15

VCs Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x ≤≤≤≤ 3 then x += 3)

– With the postcondition P(x)

• The VC is 
x < 0 ∧∧∧∧ -x ≤ 3 ⇒ P(-x + 3)  ∧∧∧∧

x < 0 ∧∧∧∧ -x > 3 ⇒ P(-x)     ∧∧∧∧

x ≥ 0 ∧∧∧∧ x ≤ 3 ⇒ P(x + 3)    ∧∧∧∧

x ≥ 0 ∧∧∧∧ x > 3 ⇒ P(x ) 

• There is one conjunct for each path
⇒ exponential number of paths!

– Conjuncts for infeasible paths have un-satisfiable guards!

• Try with P(x) = x ≥ 3

#16

VCs Can Be Exponential
• VCs are exponential in the size of the source 
because they attempt relative completeness:
– Perhaps the correctness of the program must be argued 
independently for each path

• Unlikely that the programmer wrote a program by 
considering an exponential number of cases
– But possible. Any examples? Any solutions?

#17

VCs Can Be Exponential

• VCs are exponential in the size of the source 

because they attempt relative completeness:

– Perhaps the correctness of the program must be 

argued independently for each path

• Standard Solutions:

– Allow invariants even in straight-line code

– And thus do not consider all paths 

independently!

#18

Invariants in Straight-Line Code
• Purpose: modularize the verification task

• Add the command “after c establish Inv”

– Same semantics as c (Inv is only for VC purposes)

VC(after c establish Inv, P) =def

VC(c,Inv) ∧ ∀xi. Inv ⇒ P
• where xi are the ModifiedVars(c) 

• Use when c contains many paths

after if x < 0 then x := - x  establish x ≥ 0;

if x ≤ 3 then x += 3 { P(x) }

• VC is now:
(x < 0 ⇒⇒⇒⇒ - x ≥≥≥≥ 0) ∧∧∧∧ (x ≥≥≥≥ 0 ⇒⇒⇒⇒ x ≥≥≥≥ 0) ∧∧∧∧

∀∀∀∀x. x ≥≥≥≥ 0 ⇒⇒⇒⇒ (x ≤≤≤≤ 3 ⇒⇒⇒⇒ P(x+3) ∧∧∧∧ x > 3 ⇒⇒⇒⇒ P(x))



4

#19

Dropping Paths

• In absence of annotations, we can drop some paths

• VC(if E then c1 else c2, P) = choose one of
– E ⇒ VC(c1, P) ∧ ¬E ⇒ VC(c2, P) (drop no paths)

– E ⇒ VC(c1, P) (drops “else” path!)

– ¬E ⇒ VC(c2, P) (drops “then” path!)

• We sacrifice soundness! (we are now unsound)
– No more guarantees

– Possibly still a good debugging aid

• Remarks:
– A recent trend is to sacrifice soundness to increase 
usability (e.g., Metal, ESP, even ESC)

– The PREfix tool considers only 50 non-cyclic paths 
through a function (almost at random)

#20

VCGen for Exceptions

• We extend the source language with 

exceptions without arguments (cf. HW2):

– throw throws an exception    

– try c1 catch c2 executes c2 if c1 throws

• Problem:

– We have non-local transfer of control

– What is VC(throw, P) ?

#21

VCGen for Exceptions

• We extend the source language with 
exceptions without arguments (cf. HW2):
– throw throws an exception    

– try c1 catch c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control

– What is VC(throw, P) ?

• Standard Solution: use 2 postconditions
– One for normal termination

– One for exceptional termination

#22

VCGen for Exceptions (2)

• VC(c, P, Q) is a precondition that makes c

either not terminate, or terminate normally 

with P or throw an exception with Q

• Rules

VC(skip, P, Q)    = P

VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

VC(try c1 finally c2, P, Q) = ?

#23

VCGen Finally

• Given these: 

VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

• Finally is somewhat like “if”: 

VC(try c1 finally c2, P, Q) =

VC(c1, VC(c2, P, Q), true) ∧

VC(c1, true, VC(c2, Q, Q))

• Which reduces to: 

VC(c1, VC(c2, P, Q), VC(c2, Q, Q))

#24

Hoare Rules and the Heap
• When is the following Hoare triple valid?

{ A } *x := 5 { *x + *y = 10 }

• A should be “*y = 5 or x = y”

• The Hoare rule for assignment would give us:

– [5/*x](*x + *y = 10) = 5 + *y = 10 =

– *y = 5 (we lost one case)

• Why didn’t this work? 
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#25

Handling The Heap

• We do not yet have a way to talk about 
memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic 
mapping from addresses to values:
– If A denotes an address and M is a memory state 
then:

– sel(M,A) denotes the contents of the memory 
cell 

– upd(M,A,V) denotes a new memory state 
obtained from M by writing V at address A

#26

More on Memory

• We allow variables to range over memory 

states

– We can quantify over all possible memory states 

• Use the special pseudo-variable µ (mu) in 

assertions to refer to the current memory

• Example:

∀i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0
says that entries 0..4 in array A are positive

#27

Hoare Rules: Side-Effects

• To model writes we use memory expressions

– A memory write changes the value of memory

• Important technique: treat memory as a whole

• And reason later about memory expressions with 

inference rules such as (McCarthy Axioms, ~‘67):

{ B[upd(µ, A, E)/µ] } *A := E {B}

if A1 = A2V

if A1 ≠ A2sel(M, A2)
sel(upd(M, A1, V), A2) = 

#28

Memory Aliasing

• Consider again: { A } *x := 5 { *x + *y = 10 }

• We obtain: 

A = [upd(µ, x, 5)/µ] (*x + *y = 10)

= [upd(µ, x, 5)/µ] (sel(µ, x) + sel(µ, y) = 10)

(1) = sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10

= 5 + sel(upd(µ, x, 5), y) = 10

= if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10

(2)    = x = y or *y = 5 

• Up to (1) is theorem generation

• From (1) to (2) is theorem proving

#29

Alternative Handling for Memory

• Reasoning about aliasing can be expensive 

– It is NP-hard (and/or undecideable)

• Sometimes completeness is sacrificed with 

the following (approximate) rule:

otherwise (p is a fresh 

new parameter)
P

if A1 = (obviously) A2V

if A1 ≠ (obviously) A2sel(M, A2)sel(upd(M, A1, V), A2) = 

• The meaning of “obviously” varies:

• The addresses of two distinct globals are ≠≠≠≠

• The address of a global and one of a local are ≠≠≠≠

• PREfix and GCC use such schemes
#30

VCGen Overarching Example

• Consider the program

– Precondition: B : bool ∧ A : array(bool, L)
1: I := 0

R := B

3: inv I ≥ 0 ∧ R : bool

if I ≥ L goto 9

assert saferd(A + I)

T := *(A + I)

I := I + 1

R := T

goto 3

9: return R

– Postcondition: R : bool
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#31

VCGen Overarching Example

∀A. ∀B. ∀L. ∀µ
B : bool ∧ A : array(bool, L) ⇒

0 ≥ 0 ∧ B : bool ∧
∀I. ∀R.

I ≥ 0 ∧ R : bool ⇒
I ≥ L ⇒ R : bool

∧
I < L ⇒ saferd(A + I) ∧

I + 1 ≥ 0 ∧
sel(µ, A + I) : bool

• VC contains both proof obligations and assumptions 

about the control flow                               
#32

Mutable Records - Two Models

• Let r :  RECORD { f1 : T1; f2 : T2 } END

• For us, records are reference types

• Method 1: one “memory” for each record

– One index constant for each field

– r.f1 is sel(r,f1) and  r.f1 := E is r := upd(r,f1,E)

• Method 2: one “memory” for each field

– The record address is the index

– r.f1 is sel(f1,r) and  r.f1 := E is f1 := upd(f1,r,E)

• Only works in strongly-typed languages like Java

– Fails in C where &r.f2 = &r + sizeof(T1) 

#33

VC as a “Semantic Checksum”

• Weakest preconditions are an 

expression of the program’s semantics:

– Two equivalent programs have logically 

equivalent WPs

– No matter how different their syntax is!

• VC are almost as powerful

#34

VC as a “Semantic Checksum” (2)

• Consider the “assembly 

language” program to 

the right

x := 4

x := x == 5

assert x : bool

x := not x

assert x

• High-level type checking is not appropriate here

• The VC is: 4 == 5 : bool ∧ not (4 == 5) 

• No confusion from reuse of x with different types

#35

Invariance of VC Across 

Optimizations
• VC is so good at abstracting syntactic details that it 

is syntactically preserved by many common 

optimizations

– Register allocation, instruction scheduling

– Common subexp elim, constant and copy propagation

– Dead code elimination

• We have identical VCs whether or not an 

optimization has been performed

– Preserves syntactic form, not just semantic meaning!

• This can be used to verify correctness of compiler 

optimizations (Translation Validation)
#36

VC Characterize a Safe 

Interpreter
• Consider a fictitious “safe” interpreter

– As it goes along it performs checks (e.g. “safe to read 
from this memory addr”, “this is a null-terminated 
string”, “I have not already acquired this lock”)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)

– Invariants and pre/postconditions are used to obtain a 
finite expression (through induction)

• VC is valid ⇒ interpreter never fails

– We enforce same level of “correctness”

– But better (static + more powerful checks)
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#37

VC Big Picture

• Verification conditions

– Capture the semantics of code + specifications

– Language independent

– Can be computed backward/forward on 

structured/unstructured code

– Make Axiomatic Semantics practical

#38

Invariants Are Not Easy

• Consider the following code from QuickSort
int partition(int *a, int L0, int H0, int pivot) {

int L = L0, H = H0;

while(L < H) {

while(a[L] < pivot) L ++;

while(a[H] > pivot) H --;

if(L < H) { swap a[L] and a[H] }

}

return L

}

• Consider verifying only memory safety

• What is the loop invariant for the outer loop ?

#39

Homework

• Homework 4 Due Thursday

• Read Cousot & Cousot article

• Read Abramski article

• Project Proposal Due In One Week


