Brutus Is An Honorable Man

- HW2 will not be due today.
- Homework X+1 will never be due until after I have returned Homework X to you.
- Normally this is never an issue, but I was sick yesterday and was hosting a party so I didn't get it done.

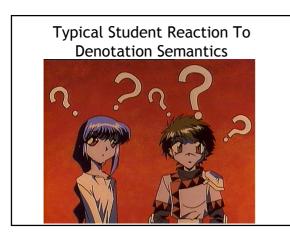
Introduction to **Denotational Semantics**

Class Likes/Dislikes Survey

- + humor/style = 5
- + readings = 2
- - 5pm class = 2
- - hand-waving proofs
- - proving for the sake of proving
- - not do reading \Rightarrow no penalty

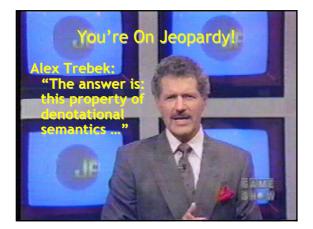
Dueling Semantics

- Operational semantics is
- simple
- _ of many flavors (natural, small-step, more or less abstract)
- not compositional
- commonly used in the real (modern research) world Denotational semantics is
- mathematical (the meaning of a syntactic expression is a mathematical object)
- compositional
- Denotational semantics is also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics



Denotational Semantics Learning Goals

- DS is <u>compositional</u> (!)
- When should I use DS?
- In DS, meaning is a "math object"
- DS uses \perp ("bottom") to mean nontermination
- DS uses fixed points and domains to handle while
 - This is the tricky bit



DS In The Real World

- ADA was formally specified with it
- Handy when you want to study non-trivial models of computation
 - e.g., "actor event diagram scenarios", process calculi
- Nice when you want to compare a program in Language 1 to a program in Language 2

Deno-Challenge

• You may skip homework assignment 3 or 4 if you can find a post-1999 paper in a first- or second-tier PL conference that uses denotational semantics and you write me a two paragraph summary of that paper.

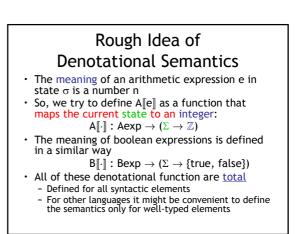
Foreshadowing

- <u>Denotational semantics</u> assigns meanings to programs
- The meaning will be a mathematical object - A number $a \in \mathbb{Z}$
 - A boolean $b \in \{true, false\}$
 - A function $c: \Sigma \rightarrow (\Sigma \cup \{\text{non-terminating}\})$
- The meaning will be determined <u>compositionally</u>
- Denotation of a command is based on the denotations of its immediate sub-commands (= more than merely syntax-directed)

New Notation

'Cause, why not?

- []] = "means" or "denotes"
- Example:
 - [[foo]] = "denotation of foo"
 - [[3 < 5]] = true
 - **[**3 + 5**]** = 8
- Sometimes we write $A[\![\cdot]\!]$ for arith, $B[\![\cdot]\!]$ for boolean, $C[\![\cdot]\!]$ for command

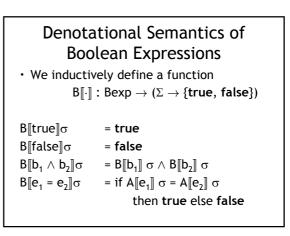


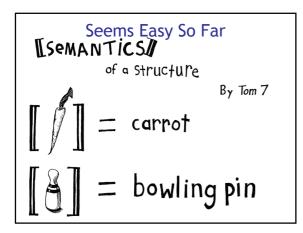
Denotational Semantics of Arithmetic Expressions

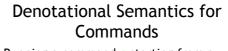
• We inductively define a function $A\llbracket \cdot \rrbracket : Aexp \to (\Sigma \to \mathbb{Z})$

 $\begin{array}{l} A[\![n]\!] \; \sigma = the \; integer \; denoted \; by \; literal \; n \\ A[\![x]\!] \; \sigma = \sigma(x) \\ A[\![e_1\!+\!e_2]\!] \; \sigma \; = \; A[\![e_1]\!] \sigma \; + \; A[\![e_2]\!] \sigma \\ A[\![e_1\!-\!e_2]\!] \; \sigma \; = \; A[\![e_1]\!] \sigma \; - \; A[\![e_2]\!] \sigma \\ A[\![e_1\!+\!e_2]\!] \; \sigma \; = \; A[\![e_1]\!] \sigma \; * \; A[\![e_2]\!] \sigma \end{array}$

• This is a <u>total function</u> (= defined for all expressions)



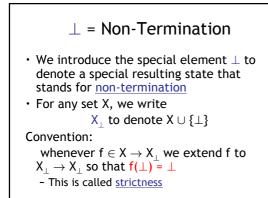


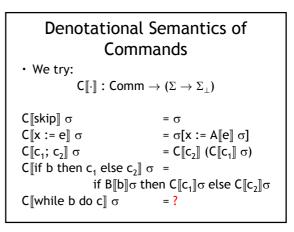


- Running a command c starting from a state σ yields another state σ'
- So, we try to define C[[c]] as a function that maps σ to σ'

 $C\llbracket \cdot \rrbracket : Comm \to (\Sigma \to \Sigma)$

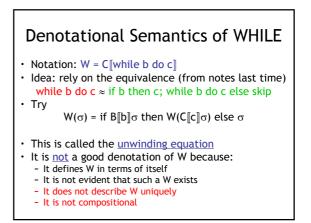
• Will this work? Bueller?

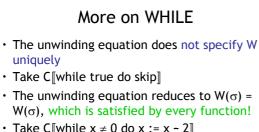




Examples

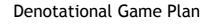
- C[[x:=2; x:=1]] σ = σ[x := 1]
- C[[if true then x:=2; x:=1 else ...]] σ = σ[x := 1]
- The semantics does not care about intermediate states (cf. "big-step")
- We haven't used \perp yet



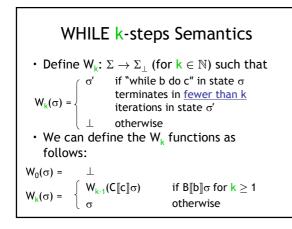


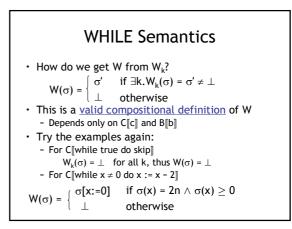
- Take C[while $x \neq 0$ do x := x 2]
- The following solution satisfies equation (for any σ') $\sigma[x := 0]$ if $\sigma(x) = 2k \wedge \sigma(x) \ge 0$

 $W(\sigma) =$ otherwise



- Since WHILE is recursive - always have something like: $W(\sigma) = F(W(\sigma))$
- Admits many possible values for $W(\sigma)$
- We will order them - With respect to non-termination = "least"
- And then find the least fixed point
- LFP W(σ)=F(W(σ)) == meaning of "while"





More on WHILE

- The solution is not quite satisfactory because
 - It has an operational flavor (= "run the loop")
 - It does not generalize easily to more complicated semantics (e.g., higher-order functions)
- However, precisely due to the operational flavor this solution is easy to prove sound w.r.t operational semantics

That Wasn't Good Enough!?

Simple Domain Theory

- Consider programs in an eager, deterministic language with one variable called "x"
- All these restrictions are just to simplify the examples
- A state σ is just the value of x Thus we can use $\mathbb Z$ instead of Σ
- The semantics of a command give the value of final x as a function of input x

 $\mathsf{C}[\![\ \mathsf{c} \]\!]: \ \mathbb{Z} \to \mathbb{Z}_{\bot}$

Examples - Revisited

- Take C[while true do skip]
 Unwinding equation reduces to W(x) = W(x)
- Any function satisfies the unwinding equation
- Desired solution is $W(x) = \bot$
- Take C[while $x \neq 0$ do x := x 2]
- Unwinding equation:
 - $W(x) = if x \neq 0$ then W(x 2) else x
 - Solutions (for all values n, $m\in \mathbb{Z}_{\perp}$): $W(x) = \text{if } x \geq 0 \text{ then}$
 - if x even then 0 else n
 - else m
- Desired solution: W(x) = if $x \geq 0 \wedge x$ even then 0 else \bot

An Ordering of Solutions

- The <u>desired solution</u> is the one in which all the arbitrariness is replaced with non-termination
 The arbitrary values in a solution are not uniquely
- determined by the semantics of the code

 We introduce an ordering of semantic functions
- Let f, $g \in \mathbb{Z} \to \mathbb{Z}_{\perp}$
- Define $f \sqsubseteq g$ as
 - $\forall x \in \mathbb{Z}$. $f(x) = \bot$ or f(x) = g(x)
 - A "smaller" function terminates at most as often, and when it terminates it produces the same result

Alternative Views of Function Ordering

• A semantic function $f\in\mathbb{Z}\to\mathbb{Z}_\perp$ can be written as $S_f\subseteq\mathbb{Z}\times\mathbb{Z}$ as follows:

 $\mathsf{S}_{\mathsf{f}} \texttt{=} \{ \ (x, \ y) \ | \ x \in \mathbb{Z}, \ \mathsf{f}(x) \texttt{=} \mathsf{y} \neq \bot \ \}$

- set of "terminating" values for the function
- If $f \sqsubseteq g$ then
 - $S_f \subseteq S_g$ (and vice-versa)
 - We say that g refines f
 - We say that f <u>approximates</u> g
 - We say that g provides more information than f

The "Best" Solution

- Consider again C[[while x ≠ 0 do x := x 2]]
 Unwinding equation: W(x) = if x ≠ 0 then W(x - 2) else x
- Not all solutions are comparable:
- $W(x) = if x \ge 0$ then if x even then 0 else 1 else 2
- $w(x) = it x \ge 0$ then if x even then 0 (last one is least and best)
- Is there always a least solution?
- How do we find it?
- How do we find it?
 If only we had a set
- If only we had a general framework for answering these questions ...

Fixed-Point Equations • Consider the general unwinding equation for while while b do c = if b then c; while b do c else skip • We define a context C (command with a hole) C = if b then c; • else skip while b do c = C[while b do c] - The grammar for C does not contain "while b do c"

• We can find such a (recursive) context for

$\begin{array}{l} \label{eq:Fixed-Point Equations} \\ \textbf{Fixed-Point Equations} \\ \textbf{F}: (\mathbb{Z} \to \mathbb{Z}_{\perp}) \to (\mathbb{Z} \to \mathbb{Z}_{\perp}) \text{ such that} \\ \quad F \llbracket \textbf{C}[\textbf{w}] \rrbracket = F \llbracket \textbf{w} \rrbracket \\ \textbf{F} \text{ or "while": } \textbf{C} = \text{ if } b \text{ then } \textbf{c}; \bullet \text{ else skip} \\ \quad F \textbf{w} \textbf{x} = \text{ if } \llbracket \textbf{b} \rrbracket \textbf{x} \text{ then } \textbf{w} (\llbracket \textbf{c} \rrbracket \textbf{x}) \text{ else } \textbf{x} \\ \quad - F \text{ depends only on } \llbracket \textbf{c} \rrbracket \text{ and } \llbracket \textbf{b} \rrbracket \end{array}$

- We can rewrite the unwinding equation for while
 - W(x) = if [[b]] x then W([[c]] x) else x
 - or, W x = F W x for all x,
 - or, $\underline{W} = F \underline{W}$ (by function equality)

Good news: the functions F that

have least fixed points!

diverges!

- Not shown here!

Fixed-Point Equations

- The meaning of "while" is a solution for W = F W
- Such a W is called a <u>fixed point</u> of F
- We want the <u>least fixed point</u>
 We need a general way to find least fixed points
 Whether such a least fixed point exists depends on
- the properties of function F
- Counterexample: F w x = if w x = \perp then 0 else \perp
- Assume W is a fixed point - F W x = W x = if W x = \perp then 0 else \perp
- Pick an x, then if $W x = \bot$ then W x = 0 else $W x = \bot$
- Contradiction. This F has no fixed point!

Can We Solve This?

correspond to contexts in our language

• The only way F w x uses w is by invoking it

• If any such invocation diverges, then F w x

• It turns out: F is monotonic, continuous

New Notation: λ

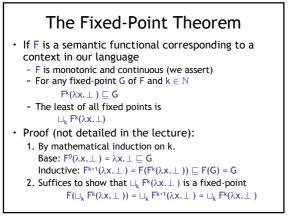
• λx. e

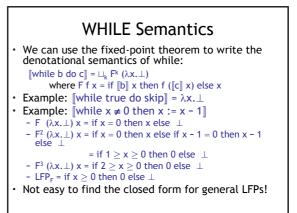
- an anonymous function with body e taking argument x

• Example: double(x) = x+x

double = $\lambda x. x+x$

- Example: allFalse(x) = false allFalse = λx. false
- Example: multiply(x,y) = x*y multiply = λx. λy. x*y





Discussion

- We can write the denotational semantics but we cannot always compute it.
 - Otherwise, we could decide the halting problem
 - H is halting for input 0 iff $\llbracket H \rrbracket \ 0 \neq \bot$
- We have derived this for programs with one variable
 - Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: <u>domain theory</u>

Can You Remember?

You just survived the hardest lecture in 615. It's all downhill from here.

Recall: Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a "math object"
- \bullet DS uses \perp ("bottom") to mean non-termination
- DS uses fixed points and domains to handle while
 - This is the tricky bit

Homework

- Homework 2 Due FRIDAY
- Homework 3 Out Today
 - Not as long as it looks separated out every exercise sub-part for clarity.
 - Your denotational answers must be compositional (e.g., $W_k(\sigma)$ or LFP)
- Read Winskel Chapter 6
- Read Hoare article
- Read Floyd article