Brutus Is An Honorable Man

« HW2 will not be due today.

« Homework X+1 will never be due until
after | have returned Homework X to you.

« Normally this is never an issue, but | was
sick yesterday and was hosting a party so
I didn’t get it done.

Introduction to

Denotational Semantics

Class Likes/Dislikes Survey

e + humor/style = 5

» + readings = 2

e - 5pmclass = 2

- hand-waving proofs

« - proving for the sake of proving
« - not do reading = no penalty

Dueling Semantics

+ Operational semantics is

- simple

- of many flavors (natural, small-step, more or less
abstract)

- not compositional

- commonly used in the real (modern research) world

+ Denotational semantics is

- mathematical (the meaning of a syntactic expression is
a mathematical object)
- compositional
+ Denotational semantics is also called: fixed-point
semantics, mathematical semantics, Scott-
Strachey semantics

Typical Student Reaction To
Denotation Semantics

Denotational Semantics
Learning Goals

» DS is compositional (!)

» When should | use DS?

« In DS, meaning is a “math object”

» DS uses | (“bottom”) to mean non-
termination

« DS uses fixed points and domains to
handle while
- This is the tricky bit




.You’re On Jeopardyl

Alex Trebek:
“The answer isif SSS

mle i

|

M

semantics....” | ‘; —
v’ A

DS In The Real World

» ADA was formally specified with it

» Handy when you want to study non-trivial
models of computation
- e.g., “actor event diagram scenarios”,

process calculi

» Nice when you want to compare a
program in Language 1 to a program in
Language 2

Deno-Challenge

» You may skip homework
assignment 3 or 4 if you can
find a post-1999 paper in a
first- or second-tier PL
conference that uses
denotational semantics and
you write me a two paragraph
summary of that paper.

Foreshadowing

» Denotational semantics assigns meanings to
programs
» The meaning will be a mathematical object
- A number acz
- A boolean b € {true, false}
- A function c: X — (XU {non-terminating})
» The meaning will be determined compositionally

- Denotation of a command is based on the denotations of
its immediate sub-commands (= more than merely
syntax-directed)

New Notation

‘Cause, why not?

[ = “means” or “denotes”
« Example:

[foo] = “denotation of foo”

[3<5] =true

[3+5] =8

» Sometimes we write A[] for arith, B[]
for boolean, C[-] for command

Rough Idea of
Denotational Semantics

+ The meaning of an arithmetic expression e in
state o is a number n
+ So, we try to define Afe] as a function that
maps the current state to an integer:
Al]: Aexp — (£ = Z)
+ The meaning of boolean expressions is defined
in a similar way
B[] : Bexp — (£ — {true, false})
+ All of these denotational function are total
- Defined for all syntactic elements

- For other languages it might be convenient to define
the semantics only for well-typed elements




Denotational Semantics of
Arithmetic Expressions

+ We inductively define a function
Al]: Aexp — (£ — Z)

A[n] o = the integer denoted by literal n
Alx] o = o(x)

Ale,+e,] o = Ale]o + Ale,]o

Alei-&;] o = Alej]o - Ale;]o

Alei*e;] o = Alej]o * Ale;]o

+ This is a total function (= defined for all
expressions)

Denotational Semantics of
Boolean Expressions

+ We inductively define a function
B[-] : Bexp — (£ — {true, false})

B[true]o = true

B[false]c = false

B[b; A byJo  =B[b;] o AB[b,] o

Ble,=e,Jc =ifAle;Jo=Afe,)] o
then true else false

Seems Easy So Far
TSemanTICS
of a Structure
By Tom 7

— carpot

%]] = bowling pin

Denotational Semantics for
Commands

* Running a command c starting from a
state o yields another state &'

+ So, we try to define C[c] as a function
that maps o to ¢

C[]: Comm — (£ = X)

+ Will this work? Bueller?

1 = Non-Termination

+ We introduce the special element | to
denote a special resulting state that
stands for non-termination

+ For any set X, we write
X, to denote X U {1}
Convention:

whenever f € X — X, we extend f to
X, — X, sothat f(L) =1
- This is called strictness

Denotational Semantics of

Commands
+ We try:
C[]:Comm — (£ — X))
C[skip] o =0
Clx:=¢] o = o[x := Ae] o]
Cles ¢l o = C[c,] (C[eq] o)

C[if b then c, else ¢;] ©
if B[b]o then C[c,]o else C[c,]o
C[while bdo c] & =7




Examples

* C[x:=2; x:=1] o =

o[x :=1]
« C[if true then x:=2; x:=1 else ..] o =
o[x :=1]

» The semantics does not care about
intermediate states (cf. "big-step”)

+ We haven't used L yet

Denotational Semantics of WHILE

+ Notation: W = C[while b do ]
+ ldea: rely on the equivalence (from notes last time)

while b do ¢ = if b then c; while b do c else skip

.Try

W(o) = if B[b]c then W(C[c]o) else o

+ This is called the unwinding equation
+ It is not a good denotation of W because:

- It defines W in terms of itself

- It is not evident that such a W exists
- It does not describe W uniquely

- It is not compositional

More on WHILE

+ The unwinding equation does not specify W
uniquely
+ Take C[while true do skip]

+ The unwinding equation reduces to W(c) =
W(o), which is satisfied by every function!

+ Take C[while x #0 do x := x - 2]
+ The following solution satisfies equation (for
any ')

otherwise

W(o) = { ofe =00 if o(n) =2k N o(r) 20

Denotational Game Plan

« Since WHILE is recursive
- always have something like: W(c) = F(W(c))
« Admits many possible values for W(c)
+ We will order them
- With respect to non-termination = "least"”
+ And then find the least fixed point
« LFP W(c)=F(W(c)) == meaning of "“while"

WHILE k-steps Semantics

+ Define W,: ¥ — X, (for k € N) such that

c' if "while b do c" in state &
terminates in fewer than k
iterations in state o'

1 otherwise
+ We can define the W, functions as
follows:
Wo(o) = L
{ W,,(C[c]o) if B[b]o for k > 1
c otherwise

Wi (o) =

Wi (o) =

WHILE Semantics

+ How do we get W from W,?
o if kW (o)=0c"=L
1L otherwise
+ This is a valid compositional definition of W

- Depends only on C[c] and B[b]
+ Try the examples again:

- For C[while true do skip]

W, (o) =L forallk, thus W(o) = L
- For C[while x # 0 do x := x - 2]
o[x:=0] ifo(x)=2nAoc(x)>0

Wio) { L otherwise

W(o) =




More on WHILE

+ The solution is not quite satisfactory
because
- It has an operational flavor (= “run the loop")

- It does not generalize easily to more
complicated semantics (e.g., higher-order
functions)

+ However, precisely due to the
operational flavor this solution is easy to
prove sound w.r.t operational semantics

That Wasn’t Good Enough!?

Simple Domain Theory

Consider programs in an eager,

deterministic language with one variable
called "x"

- All these restrictions are just to simplify the
examples
A state o is just the value of x
- Thus we can use Z instead of ¥

The semantics of a command give the
value of final x as a function of input x
Clc]:Z—17Z,

Examples - Revisited

+ Take C[while true do skip]

- Unwinding equation reduces to W(x) = W(x)
- Any function satisfies the unwinding equation
- Desired solution is W(x) = L

+ Take C[while x # 0 do x := x - 2]

- Unwinding equation:
W(x) = if x = 0 then W(x - 2) else x
- Solutions (for all values n, m € Z ):
W(x) = if x > 0 then
if x even then 0 else n
elsem
- Desired solution: W(x) = if x > 0 A x even then 0 else L

An Ordering of Solutions

+ The desired solution is the one in which all the
arbitrariness is replaced with non-termination

- The arbitrary values in a solution are not uniquely
determined by the semantics of the code

+ We introduce an ordering of semantic functions
s letf,geZ—-12Z,

- Definef C g as
Vx € Z. f(x) = L or f(x) = g(x)

- A "smaller” function terminates at most as often,
and when it terminates it produces the same result

Alternative Views of Function
Ordering

* A semantic function f € Z — Z, can be
written as S; C Z x Z as follows:
Se={(x,y) I xeZ fx)=y=1}
- set of “terminating” values for the function
< If f C g then
- 55CS, (and vice-versa)
- We say that g refines f
- We say that f approximates g
- We say that g provides more information than f




The "Best” Solution

+ Consider again C[while x # 0 do x := x - 2]
- Unwinding equation:
W(x) = if x = 0 then W(x - 2) else x
+ Not all solutions are comparable:
W(x) = if x > 0 then if x even then 0 else 1 else 2
W(x) = if x > 0 then if x even then 0 else L else 3
W(x) = if x > 0 then if x even then 0 else L else L
(last one is least and best)
+ Is there always a least solution?
+ How do we find it?

« If only we had a general framework for answering
these questions ...

Fixed-Point Equations

+ Consider the general unwinding equation for
while
while b do ¢ = if b then c; while b do c else skip

We define a context C (command with a
hole)

C =if b then c; e else skip

while b do ¢ = C[while b do c]
- The grammar for C does not contain “while b do

"

C
We can find such a (recursive) context for

Fixed-Point Equations

+ The meaning of a context is a semantic functional
F:(Z—17Z,)— (Z— 7)) such that
F[CIwI] = F [w]
« For "while": C = if b then c; e else skip
F w x = if [b] x then w ([c] x) else x
- F depends only on [c] and [b]
+ We can rewrite the unwinding equation for while
- W(x) = if [b] x then W([c] x) else x
-or, Wx =FW x for all x,
- or, W=F W (by function equality)

Fixed-Point Equations

- The meaning of "while" is a solution for W = F W
+ Such a W is called a fixed point of F
+ We want the least fixed point

- We need a general way to find least fixed points

+ Whether such a least fixed point exists depends on

the properties of function F

- Counterexample: F w x = if wx = L then 0 else L

- Assume W is a fixed point

-FWx=Wx=if Wx=_1thenOelse L

- Pick an x, then if Wx =1L thenWx=0else Wx =1
- Contradiction. This F has no fixed point!

Can We Solve This?

+ Good news: the functions F that
correspond to contexts in our language
have least fixed points!

+ The only way F w x uses w is by invoking it

+ If any such invocation diverges, then F w x
diverges!

« It turns out: F is monotonic, continuous
- Not shown here!

New Notation: A

AX. €

- an anonymous function with body e taking argument
X

« Example: double(x) = x+x
double = Ax. x+x
« Example: allFalse(x) = false
allFalse = Ax. false
» Example: multiply(x,y) = x*y
multiply = Ax. Ay. x*y




The Fixed-Point Theorem

+ If F is a semantic functional corresponding to a
context in our language
- F is monotonic and continuous (we assert)
- For any fixed-point G of F and k € N
FKAx.L)C G
- The least of all fixed points is
L F¥(ux. L)
+ Proof (not detailed in the lecture):
1. By mathematical induction on k.
Base: FOAx.L ) =2x.L CG
Inductive: Fk1(Ax. 1) = F(F¥(Ax. L)) C F(G) =G
2. Suffices to show that L, F¥(Ax.L ) is a fixed-point
F(Ly FRX. L)) = Uy FR1(x. L) = U, FROx. L)

WHILE Semantics

+ We can use the fixed-point theorem to write the

denotational semantics of while:

[while b do c] = Ly, F* (Ax.L)
where F f x = if [b] x then f ([c] x) else x

+ Example: [while true do skip] = Ax. L
+ Example: [while x # 0 then x :=x - 1]

- F (x.L)x=if x=0thenxelse L

- F2(Ax.L)x=if x=0then x else if x-1=0then x - 1

else L
=if1>x>0thenOelse L
- P (x.L)x=if2>x>0thenOelse L
- LFPg = if x > 0 then 0 else L

+ Not easy to find the closed form for general LFPs!

Discussion

+ We can write the denotational semantics but
we cannot always compute it.
- Otherwise, we could decide the halting problem
- H is halting for input 0 iff [H] 0 = L

+ We have derived this for programs with one
variable
- Generalize to multiple variables, even to

variables ranging over richer data types, even
higher-order functions: domain theory

Can You Remember?

You just survived the hardest lecture in 615.
It’s all downhill from here.

Recall: Learning Goals

« DS is compositional

» When should | use DS?

« In DS, meaning is a “math object”

» DS uses | (“bottom”) to mean non-
termination

« DS uses fixed points and domains to
handle while
- This is the tricky bit

Homework

» Homework 2 Due FRIDAY
» Homework 3 Out Today

- Not as long as it looks - separated out every
exercise sub-part for clarity.

- Your denotational answers must be
compositional (e.g., W,(c) or LFP)
» Read Winskel Chapter 6
» Read Hoare article
» Read Floyd article




