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Brutus Is An Honorable Man

• HW2 will not be due today. 

• Homework X+1 will never be due until 

after I have returned Homework X to you.

• Normally this is never an issue, but I was 

sick yesterday and was hosting a party so 

I didn’t get it done.

Introduction to Introduction to 

DenotationalDenotational SemanticsSemantics

Class Likes/Dislikes Survey

• + humor/style = 5

• + readings = 2

• - 5pm class = 2

• - hand-waving proofs

• - proving for the sake of proving

• - not do reading ⇒ no penalty

Dueling Semantics

• Operational semantics is
– simple

– of many flavors (natural, small-step, more or less 
abstract)

– not compositional

– commonly used in the real (modern research) world

• Denotational semantics is
– mathematical (the meaning of a syntactic expression is 
a mathematical object)

– compositional

• Denotational semantics is also called: fixed-point 
semantics, mathematical semantics, Scott-
Strachey semantics

Typical Student Reaction To 

Denotation Semantics

Denotational Semantics

Learning Goals

• DS is compositional (!)

• When should I use DS? 

• In DS, meaning is a “math object”

• DS uses ⊥ (“bottom”) to mean non-
termination

• DS uses fixed points and domains to 
handle while

– This is the tricky bit
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YouYou’’re On Jeopardy!re On Jeopardy!

Alex Alex TrebekTrebek: : 
““The answer is: The answer is: 
this property of this property of 
denotationaldenotational
semantics semantics …”…”

DS In The Real World

• ADA was formally specified with it

• Handy when you want to study non-trivial 

models of computation

– e.g., “actor event diagram scenarios”, 

process calculi

• Nice when you want to compare a 

program in Language 1 to a program in 

Language 2

Deno-Challenge

•You may skip homework 

assignment 3 or 4 if you can 

find a post-1999 paper in a 

first- or second-tier PL 

conference that uses 

denotational semantics and

you write me a two paragraph 

summary of that paper.

Foreshadowing

• Denotational semantics assigns meanings to 

programs

• The meaning will be a mathematical object
– A number a ∈ Z

– A boolean b ∈ {true, false}

– A function c : Σ → (Σ ∪ {non-terminating})

• The meaning will be determined compositionally

– Denotation of a command is based on the denotations of 

its immediate sub-commands (= more than merely 

syntax-directed)

New Notation

• ‘Cause, why not?

� � = “means” or “denotes”

• Example:

�foo� = “denotation of foo”

�3 < 5� = true

�3 + 5� = 8

• Sometimes we write A�·� for arith, B�·�
for boolean, C�·� for command

Rough Idea of 

Denotational Semantics
• The meaning of an arithmetic expression e in 
state σ is a number n

• So, we try to define A�e� as a function that 
maps the current state to an integer:

A�·� : Aexp → (Σ → Z) 

• The meaning of boolean expressions is defined 
in a similar way

B�·� : Bexp → (Σ → {true, false})

• All of these denotational function are total
– Defined for all syntactic elements

– For other languages it might be convenient to define 
the semantics only for well-typed elements
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Denotational Semantics of 

Arithmetic Expressions
• We inductively define a function

A�·� : Aexp → (Σ → Z)

A�n� σ = the integer denoted by literal n

A�x� σ = σ(x)

A�e1+e2� σ = A�e1�σ + A�e2�σ
A�e1-e2� σ = A�e1�σ - A�e2�σ
A�e1*e2� σ = A�e1�σ * A�e2�σ

• This is a total function (= defined for all 
expressions)

Denotational Semantics of 

Boolean Expressions
• We inductively define a function

B�·� : Bexp→ (Σ → {true, false})

B�true�σ = true

B�false�σ = false

B�b1 ∧ b2�σ = B�b1� σ ∧ B�b2� σ

B�e1 = e2�σ = if A�e1� σ = A�e2� σ

then true else false

Seems Easy So Far Denotational Semantics for 

Commands
• Running a command c starting from a 
state σ yields another state σ’

• So, we try to define C�c� as a function 
that maps σ to σ’

C�·� : Comm → (Σ → Σ)

• Will this work? Bueller? 

⊥ = Non-Termination

• We introduce the special element ⊥ to 
denote a special resulting state that 
stands for non-termination

• For any set X, we write 

X⊥ to denote X ∪ {⊥}

Convention: 

whenever f ∈ X → X⊥ we extend f to 
X⊥ → X⊥ so that f(⊥) = ⊥
– This is called strictness

Denotational Semantics of 

Commands
• We try:

C�·� : Comm → (Σ → Σ⊥)

C�skip� σ = σ

C�x := e� σ = σ[x := A�e� σ]

C�c1; c2� σ = C�c2� (C�c1� σ)

C�if b then c1 else c2� σ = 

if B�b�σ then C�c1�σ else C�c2�σ

C�while b do c� σ = ?
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Examples

• C�x:=2; x:=1� σ = 

σ[x := 1]

• C�if true then x:=2; x:=1 else …� σ =

σ[x := 1]

• The semantics does not care about 

intermediate states (cf. “big-step”)

• We haven’t used ⊥ yet

Denotational Semantics of WHILE

• Notation: W = C�while b do c�

• Idea: rely on the equivalence (from notes last time)

while b do c ≈ if b then c; while b do c else skip

• Try

W(σ) = if B�b�σ then W(C�c�σ) else σ

• This is called the unwinding equation

• It is not a good denotation of W because:
– It defines W in terms of itself

– It is not evident that such a W exists

– It does not describe W uniquely

– It is not compositional

More on WHILE

• The unwinding equation does not specify W 

uniquely

• Take C�while true do skip�

• The unwinding equation reduces to W(σ) = 

W(σ), which is satisfied by every function!

• Take C�while x ≠ 0 do x := x – 2�

• The following solution satisfies equation (for 
any σ’)

Denotational Game Plan

• Since WHILE is recursive

– always have something like: W(σ) = F(W(σ))

• Admits many possible values for W(σ)

• We will order them

– With respect to non-termination = “least”

• And then find the least fixed point

• LFP W(σ)=F(W(σ)) == meaning of “while”

WHILE k-steps Semantics

• Define Wk: Σ → Σ⊥ (for k ∈ N) such that

• We can define the Wk functions as 

follows:

Wk(σ) =

otherwise⊥

if “while b do c” in state σ

terminates in fewer than k 

iterations in state σ’

σ’

⊥W0(σ) =

Wk(σ) = otherwiseσ

if B�b�σ for k ≥ 1Wk-1(C�c�σ)

WHILE Semantics

• How do we get W from Wk?

• This is a valid compositional definition of W
– Depends only on C�c� and B�b�

• Try the examples again:
– For C�while true do skip�

Wk(σ) = ⊥ for all k, thus W(σ) = ⊥

– For C�while x ≠ 0 do x := x – 2�

W(σ) =
otherwise⊥

if ∃k.Wk(σ) = σ’ ≠ ⊥σ’

W(σ) =
otherwise⊥

if σ(x) = 2n ∧ σ(x) ≥ 0σ[x:=0]
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More on WHILE

• The solution is not quite satisfactory 

because

– It has an operational flavor (= “run the loop”)

– It does not generalize easily to more 

complicated semantics (e.g., higher-order 

functions)

• However, precisely due to the 

operational flavor this solution is easy to 

prove sound w.r.t operational semantics

That Wasn’t Good Enough!?

Simple Domain Theory

• Consider programs in an eager, 

deterministic language with one variable 
called “x”

– All these restrictions are just to simplify the 

examples

• A state σ is just the value of x
– Thus we can use Z instead of Σ

• The semantics of a command give the 

value of final x as a function of input x
C� c � : Z→ Z⊥

Examples - Revisited

• Take C�while true do skip�
– Unwinding equation reduces to W(x) = W(x)

– Any function satisfies the unwinding equation

– Desired solution is W(x) = ⊥

• Take C�while x ≠ 0 do x := x – 2�
– Unwinding equation: 

W(x) = if x ≠ 0 then W(x – 2) else x

– Solutions (for all values n, m ∈ Z⊥): 

W(x) = if x ≥ 0 then 

if x even then 0 else n

else m

– Desired solution: W(x) = if x ≥ 0 ∧ x even then 0 else ⊥

An Ordering of Solutions 

• The desired solution is the one in which all the 

arbitrariness is replaced with non-termination

– The arbitrary values in a solution are not uniquely 

determined by the semantics of the code

• We introduce an ordering of semantic functions 

• Let f, g ∈ Z → Z⊥

• Define f ⊑ g as

∀x ∈ Z. f(x) = ⊥ or f(x) = g(x)

– A “smaller” function terminates at most as often, 

and when it terminates it produces the same result 

Alternative Views of Function 

Ordering
• A semantic function f ∈ Z→ Z⊥ can be 

written as Sf ⊆ Z × Z as follows:

Sf = { (x, y) | x ∈ Z, f(x) = y ≠ ⊥ }

– set of “terminating” values for the function

• If f ⊑ g then

– Sf ⊆ Sg (and vice-versa)

– We say that g refines f

– We say that f approximates g

– We say that g provides more information than f
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The “Best” Solution

• Consider again C�while x ≠ 0 do x := x – 2�
– Unwinding equation: 

W(x) = if x ≠ 0 then W(x – 2) else x

• Not all solutions are comparable:
W(x) = if x ≥ 0 then if x even then 0 else 1 else 2

W(x) = if x ≥ 0 then if x even then 0 else ⊥ else 3

W(x) = if x ≥ 0 then if x even then 0 else ⊥ else ⊥  
(last one is least and best)

• Is there always a least solution?

• How do we find it?

• If only we had a general framework for answering 
these questions …

Fixed-Point Equations

• Consider the general unwinding equation for 

while

while b do c ≡ if b then c; while b do c else skip

• We define a context C (command with a 

hole)

C = if b then c; • else skip

while b do c ≡ C[while b do c]

– The grammar for C does not contain “while b do 

c”

• We can find such a (recursive) context for 

any looping construct

Fixed-Point Equations

• The meaning of a context is a semantic functional 

F : (Z → Z⊥) → (Z → Z⊥) such that

F �C[w]� = F �w�

• For “while”: C = if b then c; • else skip 

F w x = if �b� x then w (�c� x) else x

– F depends only on �c� and �b�

• We can rewrite the unwinding equation for while

– W(x) = if �b� x then W(�c� x) else x

– or, W x = F W x for all x, 

– or, W = F W (by function equality)

Fixed-Point Equations

• The meaning of “while” is a solution for W = F W

• Such a W is called a fixed point of F

• We want the least fixed point
– We need a general way to find least fixed points

• Whether such a least fixed point exists depends on 
the properties of function F
– Counterexample: F w x = if w x = ⊥ then 0 else ⊥

– Assume W is a fixed point

– F W x = W x = if W x = ⊥ then 0 else ⊥

– Pick an x, then if W x = ⊥ then W x = 0 else W x = ⊥

– Contradiction. This F has no fixed point! 

Can We Solve This?

• Good news: the functions F that 

correspond to contexts in our language

have least fixed points!

• The only way F w x uses w is by invoking it

• If any such invocation diverges, then F w x

diverges!

• It turns out: F is monotonic, continuous

– Not shown here!

New Notation: λ

• λλλλx. e

– an anonymous function with body e taking argument 

x 

• Example: double(x) = x+x

double = λx. x+x

• Example: allFalse(x) = false

allFalse = λx. false

• Example: multiply(x,y) = x*y

multiply = λx. λy. x*y



7

The Fixed-Point Theorem
• If F is a semantic functional corresponding to a 
context in our language
– F is monotonic and continuous (we assert)
– For any fixed-point G of F and k ∈ N

Fk(λx.⊥ ) ⊑ G

– The least of all fixed points is

⊔k F
k(λx.⊥)

• Proof (not detailed in the lecture):
1. By mathematical induction on k.

Base: F0(λx.⊥ ) = λx.⊥ ⊑ G

Inductive: Fk+1(λx.⊥ ) = F(Fk(λx.⊥ )) ⊑ F(G) = G

2. Suffices to show that ⊔k F
k(λx.⊥ ) is a fixed-point

F(⊔k F
k(λx.⊥ )) = ⊔k F

k+1(λx.⊥ ) = ⊔k F
k(λx.⊥ )

WHILE Semantics
• We can use the fixed-point theorem to write the 
denotational semantics of while:

�while b do c� = ⊔k F
k (λx.⊥)

where F f x = if �b� x then f (�c� x) else x

• Example: �while true do skip� = λx.⊥
• Example: �while x ≠≠≠≠ 0 then x := x – 1�

– F  (λx.⊥) x = if x = 0 then x else  ⊥
– F2 (λx.⊥) x = if x = 0 then x else if x – 1 = 0 then x – 1 
else  ⊥

= if 1 ≥ x ≥ 0 then 0 else  ⊥
– F3 (λx.⊥) x = if 2 ≥ x ≥ 0 then 0 else  ⊥
– LFPF = if x ≥ 0 then 0 else ⊥

• Not easy to find the closed form for general LFPs!

Discussion

• We can write the denotational semantics but 

we cannot always compute it.

– Otherwise, we could decide the halting problem

– H is halting for input 0 iff �H� 0 ≠ ⊥

• We have derived this for programs with one 

variable

– Generalize to multiple variables, even to 

variables ranging over richer data types, even 

higher-order functions: domain theory

Can You Remember?
You just survived the hardest lecture in 615. 

It’s all downhill from here.

Recall: Learning Goals

• DS is compositional

• When should I use DS? 

• In DS, meaning is a “math object”

• DS uses ⊥ (“bottom”) to mean non-
termination

• DS uses fixed points and domains to 
handle while

– This is the tricky bit

Homework

• Homework 2 Due FRIDAY

• Homework 3 Out Today

– Not as long as it looks – separated out every 
exercise sub-part for clarity. 

– Your denotational answers must be 
compositional (e.g., Wk(σ) or LFP) 

• Read Winskel Chapter 6

• Read Hoare article

• Read Floyd article


