

Wei Hu Memorial Lecture

- I will give a <u>completely optional</u> bonus survey lecture: "A Recent History of PL in Context"
 - It will discuss what has been hot in various PL subareas in the last 20 years
 - This may help you get ideas for your class project or locate things that will help your real research
 - Put a tally mark on the sheet if you'd like to attend that day I'll pick a most popular day
- · Likely Topics:
 - Bug-Finding, Software Model Checking, Automated Deduction, Proof-Carrying Code, PL/Security, Alias Analysis, Constraint-Based Analysis, Run-Time Code Generation

Homework

- Use wrw6y or mst3k (etc.) not weimer
- Tuesday ends at midnight local time
- Wednesday Office Hours → Thursday
- Do not waste too much time on HW!
- Let's do small-step opsem for "++x" together

Today's Cunning Plan

- Why Bother?
- Mathematical Induction
- Well-Founded Induction
- Structural Induction
 - "Induction On The Structure Of The Derivation"

Why Bother?

- I am loathe to teach you anything that I think is a waste of your time.
- Thus I must convince you that inductive opsem proof techniques are useful.
 - Recall class goals: understand PL research techniques and apply them to your research
- This motivation should also highlight where you might use such techniques in your own research.

Never Underestimate

"Any counter-example posed by the Reviewers against this proof would be a useless gesture, no matter what technical data they have obtained. Structural Induction is now the ultimate proof technique in the universe. I suggest we use it." --- Admiral Motti, A New Hope

Classic Example (Schema)

- "A well-typed program cannot go wrong."
 - Robin Milner
- When you design a new type system, you must show that it is safe (= that the type system is sound with respect to the operational semantics).
- A Syntactic Approach to Type Soundness. Andrew K. Wright, Matthias Felleisen, 1992.
 - Type preservation: "if you have a well-typed program and apply an opsem rule, the result is well-typed."
 - Progress: "a well-typed program will never get stuck in a state with no applicable opsem rules"
- Done for real languages: SML/NJ, SPARK ADA, Java
 - PL/I, plus basically every toy PL research language ever.

Classic Examples

- CCured Project (Berkeley)
 - A program that is instrumented with CCured run-time checks (= "adheres to the CCured type system") will not segfault (= "the x86 opsem rules will never get stuck").
- Vault Language (Microsoft Research)
 - A well-typed Vault program does not leak any tracked resources and invokes tracked APIs correctly (e.g., handles IRQL correctly in asynchronous Windows device drivers, cf. Capability Calculus)
- RC Reference-Counted Regions For C (Intel Research)
 - A well-typed RC program gains the speed and convenience of regionbased memory management but need never worry about freeing a region too early (run-time checks).
- Typed Assembly Language (Cornell)
- Reasonable C programs (e.g., device drivers) can be translated to TALx86. Well-typed TALx86 programs are type- and memory-safe.
- Secure Information Flow (Many, e.g., Volpano et al. '96)
 - Lattice model of secure flow analysis is phrased as a type system, so type soundness = noninterference.

Recent Examples

- "The proof proceeds by <u>rule induction</u> over the target term producing translation rules."
 - Chakravarty et al. '05
- "Type preservation can be proved by standard induction on the derivation of the evaluation relation."
 - Hosoya et al. '05
- "Proof: By induction on the derivation of N

 W."
 - Sumi and Pierce '05
- Method: chose four POPL 2005 papers at random, the three above mentioned structural induction. (emphasis mine)

Induction

- Most important technique for studying the formal semantics of prog languages
 - If you want to perform or understand PL research, you must grok this!
- Mathematical Induction (simple)
- Well-Founded Induction (general)
- Structural Induction (widely used in PL)

Mathematical Induction

- Goal: prove $\forall n \in \mathbb{N}$. P(n)
- Base Case: prove P(0)
- Inductive Step:
 - Prove \forall n>0. P(n) ⇒ P(n+1)
 - "Pick arbitrary n, assume P(n), prove P(n+1)"

Why Does It Work?

- There are no <u>infinite descending chains</u> of natural numbers
- For any n, P(n) can be obtained by starting from the base case and applying n instances of the inductive step

Well-Founded Induction

- A relation ≺ ⊆ A × A is well-founded if there are no infinite descending chains in A
 - Example: $<_1 = \{ (x, x + 1) \mid x \in \mathbb{N} \}$
 - · aka the predecessor relation
 - Example: $< = \{ (x, y) \mid x, y \in \mathbb{N} \text{ and } x < y \}$
- · Well-founded induction:
 - To prove $\forall x \in A$. P(x) it is enough to prove $\forall x \in A$. $[\forall y \prec x \Rightarrow P(y)] \Rightarrow P(x)$
- If ≺ is ≺₁ then we obtain mathematical induction as a special case

Structural Induction

- Recall e ::= n | e₁ + e₂ | e₁ * e₂ | x
- Define ≺ ⊆ Aexp * Aexp such that

$$e_1 \prec e_1 + e_2$$
 $e_2 \prec e_1 + e_2$

$$e_1 \prec e_1 * e_2 \qquad e_2 \prec e_1 * e_2$$

- no other elements of Aexp * Aexp are related by \prec
- To prove ∀e ∈ Aexp. P(e)
 - 1. $\vdash \forall n \in Z$. P(n)
 - 2. $\vdash \forall x \in L. P(x)$
 - 3. $\vdash \forall e_1, e_2 \in Aexp. P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2)$
 - 4. $\vdash \forall e_1, e_2 \in Aexp. P(e_1) \land P(e_2) \Rightarrow P(e_1 * e_2)$

Notes on Structural Induction

- Called <u>structural induction</u> because the proof is guided by the structure of the expression
- One proof case per form of expression
 - Atomic expressions (with no subexpressions) are all base cases
 - Composite expressions are the inductive case
- This is the most useful form of induction in PL study

Example of Induction on Structure of Expressions

- Let
 - L(e) be the # of literals and variable occurrences in e
 - O(e) be the # of operators in e
- Prove that $\forall e \in Aexp. \ L(e) = O(e) + 1$
- Proof: by induction on the structure of e
 - Case e = n. L(e) = 1 and O(e) = 0
 - Case e = x. L(e) = 1 and O(e) = 0
 - Case $e = e_1 + e_2$.
 - L(e) = L(e_1) + L(e_2) and O(e) = O(e_1) + O(e_2) + 1
 - By induction hypothesis $L(e_1) = O(e_1) + 1$ and $L(e_2) = O(e_2) + 1$
 - Thus $L(e) = O(e_1) + O(e_2) + 2 = O(e) + 1$
 - Case $e = e_1 * e_2$. Same as the case for +

Other Proofs by Structural Induction on Expressions

- Most proofs for Aexp sublanguage of IMP
- Small-step and natural semantics obtain equivalent results:

 $\forall e \in Exp. \ \forall n \in \mathbb{N}. \ e \rightarrow^* n \Leftrightarrow e \downarrow n$

 Structural induction on expressions works here because all of the semantics are syntax directed

Stating The Obvious (With a Sense of Discovery)

- You are given a concrete state σ .
- You have $\vdash \langle x + 1, \sigma \rangle \downarrow 5$
- You also have $\vdash \langle x + 1, \sigma \rangle \downarrow 88$
- Is this possible?

Why That Is Not Possible

- Prove that IMP is deterministic
 - $\forall e \in Aexp. \ \forall \sigma \in \Sigma. \ \forall n, \ n' \in \mathbb{N}. \ \langle e, \sigma \rangle \ \ \ \ \ n \wedge \langle e, \sigma \rangle \ \ \ \ \ n' \Rightarrow \ \ n = n'$ $\forall c \in \text{Comm.} \ \forall \sigma, \sigma', \sigma'' \in \Sigma. \ \ \ \ \, < c, \ \sigma > \ \ \, \downarrow \ \sigma' \ \ \, \land \ \ \, < c, \ \sigma > \ \ \, \downarrow \ \sigma'' \ \ \, \Rightarrow \ \ \, \sigma' = \sigma''$
- No immediate way to use *mathematical* induction
- For commands we cannot use induction on the structure of the command
 - while's evaluation does *not* depend only on the evaluation of its strict subexpressions

 $\langle b, \sigma \rangle \Downarrow \text{true} \quad \langle c, \sigma \rangle \Downarrow \sigma' \quad \langle \text{while b do } c, \sigma' \rangle \Downarrow \sigma''$ while b do c, $\sigma > \psi \sigma''$

Recall Opsem

- Operational semantics assigns meanings to programs by listing rules of inference that allow you to prove judgments by making derivations.
- A derivation is a treestructured object made up of valid instances of inference rules.

We Need Something New

- Some more powerful form of induction ...
- With all the bells and whistles!

Induction on the Structure of Derivations

- Key idea: The hypothesis does not just assume a $c \in$ Comm but the existence of a derivation of $\langle c, \sigma \rangle \Downarrow \sigma'$
- Derivation trees are also defined inductively, just like expression trees
- A derivation is built of subderivations:

 $\langle x + 1, \sigma_{i+1} \rangle \downarrow 6 - i$ $\langle x:=x+1, \sigma_{i+1} \rangle \downarrow \sigma_{i}$ $\langle W, \sigma_i \rangle \Downarrow \sigma_0$ $\langle x \leq 5, \sigma_{i+1} \rangle \downarrow \text{true}$ $\langle x:=x+1; W, \sigma_{i+1} \rangle \cup \sigma_0$

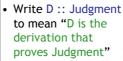
Adapt the structural induction principle to work on the structure of derivations

Induction on Derivations

- · To prove that for all derivations D of a judgment, property P holds
- 1. For each derivation rule of the form

- 2. Assume P holds for derivations of H_i (i = 1..n)
- 3. Prove the the property holds for the derivation obtained from the derivations of H_i using the given rule

New **Notation**



• Example:

D:: $\langle x+1, \sigma \rangle \downarrow 2$

I REALIZED THAT THE PURPOSE OF WRITING IS TO INFLATE WEAK IDEAS. OBSCURE POOR REASONING

Induction on Derivations (2)

- Prove that evaluation of commands is deterministic: $\langle c, \sigma \rangle \Downarrow \sigma' \Rightarrow \forall \sigma'' \in \Sigma. \langle c, \sigma \rangle \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''$
- Pick arbitrary c, σ , σ' and D :: $\langle c, \sigma \rangle \Downarrow \sigma'$
- To prove: $\forall \sigma'' \in \Sigma$. <c, $\sigma > \bigcup \sigma'' \Rightarrow \sigma' = \sigma''$
- Proof: by induction on the structure of the derivation D
- · Case: last rule used in D was the one for skip

D::
$$\frac{}{\langle skip, \sigma \rangle \Downarrow \sigma}$$

- This means that c = skip, and σ' = σ
- By <u>inversion</u> <c, σ > ψ σ'' uses the rule for skip
- Thus $\sigma'' = \sigma$
- This is a base case in the induction

Induction on Derivations (3)

Case: the last rule used in D was the one for sequencing

$$D :: \quad \frac{D_1 :: \langle c_1, \sigma \rangle \Downarrow \sigma_1 \quad D_2 :: \langle c_2, \sigma_1 \rangle \Downarrow \sigma'}{\langle c_1, c_2, \sigma \rangle \Downarrow \sigma'}$$

- Pick arbitrary σ'' such that $D'' :: \langle c_1; c_2, \sigma \rangle \Downarrow \sigma''$.
 - by inversion D" uses the rule for sequencing
 - and has subderivations $D''_1:: \langle c_1, \sigma \rangle \Downarrow \sigma''_1$ and $D''_2:: \langle c_2, \sigma''_1 \rangle \Downarrow \sigma''$
- By induction hypothesis on D_1 (with D''_1): $\sigma_1 = \sigma''_1$
 - Now D"₂ :: $\langle c_2, \sigma_1 \rangle \cup \sigma$ "
- By induction hypothesis on D_2 (with D''_2): $\sigma'' = \sigma'$
- This is a simple inductive case

Induction on Derivations (4)

· Case: the last rule used in D was while true

$$\mathsf{D} :: \ \frac{\mathsf{D}_1 :: \langle \mathsf{b}, \sigma \rangle \ \forall \ \mathsf{true} \ \ \mathsf{D}_2 :: \langle \mathsf{c}, \sigma \rangle \ \forall \ \sigma_1 \ \ \mathsf{D}_3 :: \langle \mathsf{while} \ \mathsf{b} \ \mathsf{do} \ \mathsf{c}, \sigma_1 \rangle \ \forall \ \sigma'}{\langle \mathsf{while} \ \mathsf{b} \ \mathsf{do} \ \mathsf{c}, \sigma_2 \ \forall \ \sigma'}$$

- Pick arbitrary σ'' such that D"::<while b do c, $\sigma > \bigcup \sigma''$
 - by inversion and determinism of boolean expressions, D" also uses the rule for while true
 - and has subderivations $D''_2 :: \langle c, \sigma \rangle \Downarrow \sigma''_1$ and $D''_3 :: \langle W, \sigma''_1 \rangle \Downarrow \sigma''$
- By induction hypothesis on D_2 (with D_2): $\sigma_1 = \sigma_1$
 - Now D"₃ :: <while b do c, σ_1 > ψ σ "
- By induction hypothesis on D_3 (with D''_3): $\sigma'' = \sigma'$

What Do You, The Viewers At Home, Think?

- Let's do if true together!
- Case: the last rule in D was if true

 Try to do this on a piece of paper. In a few minutes I'll have some lucky winners come on down.

Induction on Derivations (5)

• Case: the last rule in D was if true

$$D :: \ \ \frac{D_1 :: \, \, \, \mathsf{cb}, \, \sigma \mathsf{s} \ \, \psi \, \, \mathsf{true} \qquad \qquad D_2 :: \, \, \, \mathsf{cc1}, \, \sigma \mathsf{s} \ \, \psi \, \, \sigma'}{\mathsf{cif} \, \, \mathsf{b} \, \, \mathsf{do} \, \, \mathsf{c1} \, \, \mathsf{else} \, \, \mathsf{c2}, \, \sigma \mathsf{s} \, \, \psi \, \, \sigma'}$$

- Pick arbitrary σ'' such that
 - D" :: <if b do c1 else c2, σ > ψ σ "
 - By inversion and determinism, $D^{\prime\prime}$ also uses if true
 - And has subderivations $D''_1 :: \langle b, \sigma \rangle \Downarrow$ true and $D''_2 :: \langle c1, \sigma \rangle \Downarrow \sigma''$
- By induction hypothesis on D_2 (with D''_2): $\sigma' = \sigma''$

Induction on Derivations Summary

- If you must prove $\forall x \in A. \ P(x) \Rightarrow Q(x)$
 - with A inductively defined and P(x) rule-defined
 - we pick arbitrary $x \in A$ and D :: P(x)
 - we could do induction on both facts
 - $\bullet \ \ \, x \in A \qquad \qquad leads \ to \ induction \ on \ the \ structure \ of \ x$
 - $\,\cdot\,$ D :: P(x) leads to induction on the structure of D
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet
- Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot

Equivalence

Two expressions (commands) are <u>equivalent</u> if they yield the same result from all states

```
\begin{array}{l} e_1\thickapprox e_2 \text{ iff}\\ \forall \sigma\in\Sigma.\ \forall n\in\mathbb{N}.\\ < e_1,\ \sigma> \ \  \  \, \text{n iff}\ < e_2,\ \sigma> \ \  \  \, \text{n}\\ \text{and for commands}\\ c_1\thickapprox c_2 \text{ iff}\\ \forall \sigma,\sigma'\in\Sigma.\\ < c_1,\ \sigma> \  \  \, \  \, \sigma' \text{ iff}\ < c_2,\ \sigma> \  \  \, \sigma' \end{array}
```

Notes on Equivalence

- · Equivalence is like logical validity
 - It must hold in all states (= all valuations)
 - 2 ≈ 1 + 1 is like "2 = 1 + 1 is valid"
 - 2 ≈ 1 + x might or might not hold.
 So, 2 is not equivalent to 1 + x
- Equivalence (for IMP) is undecidable
 - If it were decidable we could solve the halting problem for IMP. How?
- · Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling
- · Semantics is the basis for proving equivalence

Equivalence Examples

- skip; c ≈ c
- while b do c ≈

if b then c; while b do c else skip

- If $e_1 \approx e_2$ then $x := e_1 \approx x := e_2$
- while true do skip \approx while true do x := x + 1
- If c is

while $x \neq y$ do
if $x \geq y$ then x := x - y else y := y - x

 $(x := 221; y := 527; c) \approx (x := 17; y := 17)$

Potential Equivalence

- $(x := e_1; x := e_2) \approx x := e_2$
- Is this a valid equivalence?

Not An Equivalence

- $(x := e_1; x := e_2) \sim x := e_2$
- · lie. Chigau yo. Dame desu!
- Not a valid equivalence for all e₁, e₂.
- · Consider:

$$-(x := x+1; x := x+2) \sim x := x+2$$

• But for n₁, n₂ it's fine:

$$-(x := n_1; x := n_2) \approx x := n_2$$

Proving An Equivalence

- Prove that "skip; c ≈ c" for all c
- Assume that D :: $\langle skip; c, \sigma \rangle \downarrow \sigma'$
- By inversion (twice) we have that

$$\mathsf{D} :: \frac{ \overbrace{\langle \mathsf{skip}, \sigma \rangle \Downarrow \sigma} \quad \mathsf{D}_1 :: \langle \mathsf{c}, \sigma \rangle \Downarrow \sigma'}{\langle \mathsf{skip}; \, \mathsf{c}, \sigma \rangle \Downarrow \sigma'}$$

- Thus, we have $D_1 :: \langle c, \sigma \rangle \Downarrow \sigma'$
- · The other direction is similar

Proving An Inequivalence

- Prove that $x := y \sim x := z$ when $y \neq z$
- It suffices to exhibit a σ in which the two commands yield different results
- Let $\sigma(y) = 0$ and $\sigma(z) = 1$
- Then

$$\langle x := y, \sigma \rangle \ \ \sigma[x := 0]$$

$$\langle x := z, \sigma \rangle \ \ \sigma[x := 1]$$

Summary of Operational Semantics

- · Precise specification of dynamic semantics
 - order of evaluation (or that it doesn't matter)
 - error conditions (sometimes implicitly, by rule applicability; "no applicable rule" = "get stuck")
- Simple and abstract (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.
- Often not compositional (see while)
- Basis for many proofs about a language
 - Especially when combined with type systems!
- Basis for much reasoning about programs
 Point of reference for other semantics

Homework

- Homework 1 Due Today
- Homework 2 Due Thursday
 - No more homework overlaps.
- Read Winskel Chapter 5
 - Pay careful attention.
- Read Winskel Chapter 8
 - Summarize.