

Today's Cunning Plan

- Review, Truth, and Provability
- Large-Step Opsem Commentary
- Small-Step Contextual Semantics
 - Reductions, Redexes, and Contexts
- Applications
- (Induction)

Summary - Semantics

- A formal semantics is a system for assigning meanings to programs.
- For now, programs are IMP commands and expressions
- In operational semantics the meaning of a program is "what it evaluates to"
- Any opsem system gives rules of inference that tell you how to evaluate programs

Summary - Judgments

• Rules of inference allow you to derive judgments ("something that is knowable") like

- In state σ , expression e evaluates to n

- After evaluating command c in state σ the new state will be σ
- State σ maps variables to values ($\sigma: L \to Z$)
- Inferences equivalent up to variable renaming:

$$\langle c, \sigma \rangle \downarrow \sigma' === \langle c', \sigma_7 \rangle \downarrow \sigma_8$$

Summary - Rules

• Rules of inference list the hypotheses necessary to arrive at a conclusion

$$\frac{\langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2}{\langle e_1 - e_2, \sigma \rangle \Downarrow n_1 \text{ minus } n_2}$$

• A derivation involves interlocking (wellformed) instances of rules of inference

$$\frac{\langle 4, \sigma_3 \rangle \Downarrow 4 \quad \langle 2, \sigma_3 \rangle \Downarrow 2}{\langle 4^*2, \sigma_3 \rangle \Downarrow 8 \quad \langle 6, \sigma_3 \rangle \Downarrow 6}$$

$$\langle (4^*2) - 6, \sigma_3 \rangle \Downarrow 2$$

Provability

- Given an opsem system, $\langle e, \sigma \rangle \downarrow n$ is provable if there exists a well-formed derivation with $\langle e, \sigma \rangle \downarrow n$ as its conclusion
 - "well-formed" = "every step in the derivation is a valid instance of one of the rules of inference for this opsem system"
 - "⊢ <e, σ > ψ n" = "it is provable that <e, σ > ψ n"
- · We would like truth and provability to be closely related

Truth?

- "A Vorlon said understanding is a threeedged sword. Your side, their side and the truth."
 - Sheridan, Into The Fire
- We will not formally define "truth" yet
- Instead we appeal to your intuition
 - <2+2, σ > \downarrow 4
- -- should be true
- <2+2, σ > ψ 5
- -- should be false

Completeness

- A proof system (like our operational semantics) is complete if every true judgment is provable.
- If we *replaced* the subtract rule with:

$$\frac{\langle e_1, \sigma \rangle \Downarrow n \qquad \langle e_2, \sigma \rangle \Downarrow 0}{\langle e_1 - e_2, \sigma \rangle \Downarrow n}$$

• Our opsem would be incomplete: <4-2, σ > \Downarrow 2 -- true but not provable

Consistency

- A proof system is consistent (or sound) if every provable judgment is true.
- If we *replaced* the subtract rule with:

$$\frac{\langle e_1,\,\sigma\rangle\,\, \forall\,\, n_1 \qquad \langle e_2,\,\sigma\rangle\,\, \forall\,\, n_2}{\langle e_1\,-\,e_2,\,\sigma\rangle\,\, \forall\,\, n_1\,+\,3}$$

- Our opsem would be inconsistent (or unsound):
 - <6-1, σ > ψ 9 -- false but provable

"A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines."
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.

Desired Traits

- Typically a system (of operational semantics) is always complete (unless you forget a rule)
- If you are not careful, however, your system may be unsound
- Usually that is <u>very bad</u>
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however
- In this class your work should be complete and consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. What do you mean, "bad"? Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneous and every molecule in your body exploding at the speed of light.

With That In Mind

• We now return to opsem for IMP

$$\frac{\langle e, \sigma \rangle \Downarrow n}{\langle x := e, \sigma \rangle \Downarrow \sigma[x := n]}$$

$$\frac{\langle b, \sigma \rangle \Downarrow false}{\langle while b do c, \sigma \rangle \Downarrow \sigma}$$

$$\frac{\langle b, \sigma \rangle \Downarrow false}{\langle while b do c, \sigma \rangle \Downarrow \sigma}$$

 \langle b, σ \rangle \forall true \langle c; while b do c, σ \rangle \forall σ' <while b do c, $\sigma > \psi \sigma'$

Command Evaluation Notes

- The order of evaluation is important
 - c₁ is evaluated before c₂ in c₁; c₂
 - c_2 is not evaluated in "if true then c_1 else c_2 "
 - c is not evaluated in "while false do c"
 - b is evaluated first in "if b then c_1 else c_2 "
 - this is explicit in the evaluation rules
- Conditional constructs (e.g., b₁ ∨ b₂) have multiple evaluation rules
 - but only one can be applied at one time

Command Evaluation Trials

- The evaluation rules are <u>not syntax-</u> directed
 - See the rules for while, A
 - The evaluation might not terminate
- Recall: the evaluation rules suggest an interpreter
- Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

- It is hard to talk about commands whose evaluation does not terminate
 - i.e., when there is no σ' such that <c, $\sigma \!\!> \!\!\!\! \downarrow \sigma'$
 - But that is true also of ill-formed or erroneous commands (in a richer language)!
- It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)

Semantics Solution

- <u>Small-step semantics</u> addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states
- Not quite as easy as large-step natural semantics, though
- Contextual semantics is a small-step semantics where the atomic execution step is a <u>rewrite</u> of the program

Contextual Semantics

- We will define a relation $\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle$
 - c' is obtained from c via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 - · one from which we cannot make further progress
 - For IMP the terminal command is "skip"
 - As long as the command is not "skip" we can make further progress
 - some commands *never* reduce to skip (e.g., "while true do skip")

Contextual Derivations

- In small-step contextual semantics, derivations are not tree-structured
- A <u>contextual semantics derivation</u> is a sequence (or list) of atomic rewrites:

$$\langle x+(7-3),\sigma\rangle \rightarrow \langle x+(4),\sigma\rangle \rightarrow \langle 5+4,\sigma\rangle \rightarrow \langle 9,\sigma\rangle$$

What is an Atomic Reduction?

- What is an atomic reduction step?
 - Granularity is a choice of the semantics designer
- How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue

Redexes

- A <u>redex</u> is a syntactic expression or command that can be reduced (transformed) in one atomic step
- · Redexes are defined via a grammar:

- · For brevity, we mix exp and command redexes
- Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

Local Reduction Rules for IMP

- One for each redex: $\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle$
 - means that in state σ, the redex r can be replaced in one step with the expression e

```
one step with the expression e
\langle x, \sigma \rangle \rightarrow \langle \sigma(x), \sigma \rangle
\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n, \sigma \rangle where n = n_1 plus n_2
\langle n_1 = n_2, \sigma \rangle \rightarrow \langle \text{true}, \sigma \rangle if n_1 = n_2
\langle x := n, \sigma \rangle \rightarrow \langle \text{skip}, \sigma[x := n] \rangle
\langle \text{skip}; c, \sigma \rangle \rightarrow \langle c, \sigma \rangle
\langle \text{if true then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle
\langle \text{if false then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_2, \sigma \rangle
\langle \text{while b do } c, \sigma \rangle \rightarrow \langle c, \sigma \rangle
```

<if b then c; while b do c else skip, σ >

Not happy? I'll explain with pictures soon!

The Global Reduction Rule

- · General idea of contextual semantics
 - Decompose the current expression into the redex-to-reduce-next and the remaining program
 - The remaining program is called a context
 - Reduce the redex "r" to some other expression "e"
 - The resulting (reduced) expression consists of "e" with the original context

As A Picture (1)

```
(Context)
...
x := 2+2
...
```

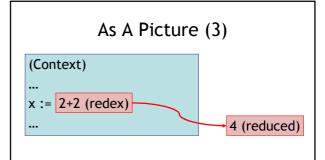
Step 1: Find The Redex

As A Picture (2)

```
(Context)
...
x := 2+2 (redex)
...
```

Step 1: Find The Redex

Step 2: Reduce The Redex



Step 1: Find The Redex Step 2: Reduce The Redex

As A Picture (4)

(Context) ... x := 4 ...

Step 1: Find The Redex

Step 2: Reduce The Redex

Step 3: Replace It In The Context

Contextual Analysis

- · We use H to range over contexts
- We write H[r] for the expression obtained by placing redex r in context H
- · Now we can define a small step

If
$$\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle$$

then $\langle H[r], \sigma \rangle \rightarrow \langle H[e], \sigma' \rangle$

Contexts

- A <u>context</u> is like an expression (or command) with a marker • in the place where the <u>redex</u> goes
- · Examples:
 - To evaluate "(1 + 3) + 2" we use the redex 1 + 3 and the context "• + 2"
 - To evaluate "if x > 2 then c_1 else c_2 " we use the redex x and the context "if $\bullet > 2$ then c_1 else c_2 "

Context Terminology

- A context is also called an "expression with a hole"
- The marker is sometimes called a hole
- H[r] is the expression obtained from H by replacing • with the redex r

"Avoid context and specifics; generalize and keep repeating the generalization." -- Jack Schwartz

Contextual Semantics Example

• x := 1; x := x + 1 with initial state [x:=0]

X 1 1 / X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1		
Redex •	Context	
x := 1	•; x := x+1	
skip; x := x+1	•	
x	x := • + 1	
What happens next?		
	Redex • x := 1 skip; x := x+1 x	

Contextual Semantics Example

• x := 1; x := x + 1 with initial state [x:=0]

<comm, state=""></comm,>	Redex •	Context
x := 1; x := x+1, [x := 0]	x := 1	•; x := x+1
<skip; :="1]" [x="" x=""></skip;>	skip; x := x+1	•
<x :="1]" [x=""></x>	х	x := • + 1
<x +="" 1,="" :="1]" [x=""></x>	1 + 1	x := •
<x :="1]" [x=""></x>	x := 2	•
<skip, :="2]" [x=""></skip,>		

More On Contexts

· Contexts are defined by a grammar:

```
H ::= • | n + H

| H + e

| x := H

| if H then c₁ else c₂

| H; c
```

- · A context has exactly one marker
- · A redex is never a value

What's In A Context?

- Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as H[r]
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If $\underline{e_1}$ is not $\underline{n_1}$ then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique

Unique Next Redex: Proof By Handwaving Examples

- e.g. c = "c₁; c₂" either
 - c_1 = skip and then $c = H[skip; c_2]$ with $H = \bullet$
 - or $c_1 \neq$ skip and then $c_1 = H[r]$; so c = H'[r] with H' = H; c_2
- e.g. c = "if b then c₁ else c₂"
 - either b = true or b = false and then c = H[r] with H = •
 - or b is not a value and b = H[r]; so c = H'[r] with H' = if H then c_1 else c_2

Context Decomposition

· Decomposition theorem:

If c is not "skip" then there exist unique
H and r such that c is H[r]

- "Exist" means progress
- "Unique" means determinism

Short-Circuit Evaluation

- What if we want to express short-circuit evaluation of ^?
 - Define the following contexts, redexes and local reduction rules

H ::= ... | $H \wedge b_2$ r ::= ... | true \wedge b | false \wedge b <true \wedge b, σ > \rightarrow

<false \wedge b, σ > \rightarrow <false, σ >

 the local reduction kicks in before b₂ is evaluated

Contextual Semantics Summary

- · Can view as representing the program counter
- \bullet The advancement rules for \bullet are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly
- The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We'll do that when we study memory allocation, etc.

Reading Real-World Examples

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

```
\begin{split} & P \vdash \langle \mathsf{E}[\mathit{obj}.\mathit{fd}], \mathcal{S} \rangle \hookrightarrow \langle \mathsf{E}[\mathcal{F}(\mathit{fd})], \mathcal{S} \rangle \\ & \quad \text{where } \mathcal{F} = \mathit{fields}(\mathcal{S}(\mathit{obj})) \text{ and } \mathit{fd} \in \mathrm{dom}(\mathcal{F}) \end{split} \\ & \mathsf{P} \vdash \langle \mathsf{E}[\mathsf{obj}.\mathsf{fd}], \mathsf{S} \rangle \rightarrow \langle \mathsf{E}[\mathsf{F}(\mathsf{fd})], \mathsf{S} \rangle \\ & \quad \text{where } \mathsf{F} = \mathsf{fields}(\mathsf{S}(\mathsf{obj})) \text{ and } \mathsf{fd} \in \mathsf{dom}(\mathsf{F}) \end{split}
```

- They use "E" for context, we use "H"
- They use "S" for state, we use " σ "

Lost In Translation

- P \vdash <H[obj.fd], σ > \rightarrow <H[F(fd)], σ >
 Where F=fields(σ (obj)) and fd \in dom(F)
- They have "P ⊢", but that just means "it can be proved in our system given P"
- <H[obj.fd], σ > \rightarrow <H[F(fd)], σ >
 - Where F=fields($\sigma(obj)$) and $fd \in dom(F)$

Lost In Translation 2

- $<H[obj.fd],\sigma> \rightarrow <H[F(fd)],\sigma>$
 - Where F=fields($\sigma(obj)$) and $fd \in dom(F)$
- They model objects (like obj), but we do not (yet) let's just make fd a variable:
- $\bullet \ \ \mathsf{'H[fd]}, \sigma \mathsf{>} \ \to \ \mathsf{'H[F(fd)]}, \sigma \mathsf{>}$
 - Where $F\text{=}\sigma$ and $fd\in L$
- Which is just our variable-lookup rule:
- <H[fd], σ $> \rightarrow$ <H[σ (fd)], σ $> (when fd <math>\in$ L)

Homework

- Straw Poll
- · Homework 2 Out Today
 - Due Next Week
- Read Winskel Chapter 3
- Want an extra opsem review?
 - Natural deduction article
 - Plotkin Chapter 2
- Optional Philosophy of Science article