A Piece of My Mind: A Sentiment Analysis Approach for Online Dispute Detection

Lu Wang and Claire Cardie Department of Computer Science Cornell University

Cornell University

Introduction

- According to Wikipedia, there are more than 4.5M articles in English Wikipedia alone.
- About 21.6M users.
- About 130K registered editors.

A Disputed Discussion

Emy: I think everyone is forgetting that my previous image was the lead image for well over a year! ... *Massimo is the one who began the "edit war"*...

Massimo: I'm not going to start a debate about who started the fight, since it is childish and pointless... As for your new image... I'm sorry to say so, but it is grossly over processed...

Emy: Yes, your camera has slightly higher resolution than mine. <u>I'm glad you</u> paid more money for a camera than I did. Congrats. I appreciate your constructive criticism. Thank you.

Massimo: First of all, I want to make clear that this is not personal. I just want to have the best picture as a lead for the article.

Emy: <u>Wow, I am really enjoying this photography debate. It is seriously making</u> <u>my work day so much more enjoyable!</u>... don't make assumptions you know nothing about. <u>Really, grow up.</u>... <u>Sound good?</u>

Massimo: *I do feel it is a pity, that you turned out to be a sore loser.*

The Problem: Online Dispute Detection

"Sometimes I think the collaborative process would work better without you."

[Credit: https://www.cartoonbank.com]

The Problem: Online Dispute Detection

Facilitate collaboration

[Credit: http://wondermark.com]

- Identify controversial topics
- Analyze user relations
- Predict stance

Our Objectives

Detecting the online disputes automatically

- Predicting disputes on a newly constructed dataset of scale.
- Understanding whether linguistic features, e.g. sentiment flow, are importance for dispute detection.

Previous Work

- Analyzed dispute-laden content to discover features correlated with conflicts and disputes
 - Kittur et al. (2007): edit history
 - Billings and Watts (2010): dispute resolution
 - Yasseri et al. (2012): temporal characteristics
 - Kraut and Resnick (2012): design of successful online communities
- However, they all rely on small number of manually selected discussions known to involve disputes.

Roadmap

- A dispute corpus constructed from Wikipedia
- Online dispute detection
 - Sentence-level sentiment prediction
 - Dispute detection
- Conclusion

Roadmap

- A dispute corpus constructed from Wikipedia
- Online dispute detection
 - Sentence-level sentiment prediction
 - Dispute detection
- Conclusion

A Dispute Corpus Constructed from Wikipedia

The Pixar universe

From Wikipedia, the free encyclopedia

This article's factual accuracy is disputed. Please help to ensure that disp

A Dispute Corpus Constructed from Wikipedia

The Pixar universe

From Wikipedia, the free encyclopedia

- Disputed
- TotallyDisputed
- DisputedSection
- TotallyDisputedSection
- POV
- 2013-03-04 Wikipedia data dump
- Result in 19,071 talk pages

A Dispute Corpus Constructed from Wikipedia

Step 1: Get Talk Pages of Disputed Articles

Step 2: Get Discussions with Disputes.

3609 discussions are collected

Step 3: Get Discussions without Disputes.

- 3609 non-dispute discussions are randomly selected.
- We consider non-dispute discussions with at least 3 distinct speakers and 10 turns.
- The average turn numbers for dispute and non-dispute discussions are 45.03 and 22.95, respectively

Roadmap

- A dispute corpus constructed from Wikipedia
- Online dispute detection
 - Sentence-level sentiment prediction
 - Dispute detection
- Conclusion

Sentence-Level Sentiment Prediction

- Input: sentences $x = \{x \not\mid 1, \dots, x \not\mid n\}$ from a single turn
- Output: sequence of sentiment labels $y = \{y \nmid 1, ..., y \nmid n\}$, where $y \nmid i \in \{NN, N, O, P, PP\}$
- NN: very negative
- N: negative
- O: neutral
- P: positive
- PP: very positive

• Partial order: $NN \le N \le O \le P \le PP$

Sentence-Level Sentiment Prediction

- Isotonic Conditional Random Fields (CRF)
 - Mao and Lebanon (2007) proposed isotonic CRF to predict sentiment in movie reviews.
 - Encode domain knowledge through isotonic constraints on model parameters.

Isotonic CRF

- $\begin{array}{l}pyx = 1/Z(x) \exp\left(\sum i \uparrow f f \sigma, \tau \uparrow f \lambda \downarrow < \sigma, \tau > f \downarrow < \sigma, \tau > (y \downarrow i 1, y \downarrow i)\right) \\ +\sum i \uparrow f f \sigma, w \uparrow f \mu \downarrow < \sigma, w > g \downarrow < \sigma, w > (y \downarrow i 1, x \downarrow i)\end{array}$
- $f \downarrow < \sigma, \tau >$, $g \downarrow < \sigma, w >$ are feature functions, $\lambda \downarrow < \sigma, \tau >$, $\mu \downarrow < \sigma, w >$ are the parameters when $y \downarrow i - 1$, $y \downarrow i$, $x \downarrow i$ take values of λ , τ , w.
- Lexicon $M = M \downarrow p \cup M \downarrow n$, where $M \downarrow p$ (or $M \downarrow n$) contain features associated with positive (or negative) sentiments.
- Monotonicity constraints:
 - $\sigma \leq \sigma \uparrow' \Rightarrow \mu \downarrow < \sigma, w > \leq \mu \downarrow < \sigma', w > , w \in M \downarrow p$
 - $\sigma \geq \sigma \uparrow' \Rightarrow \mu \downarrow < \sigma, w > \leq \mu \downarrow < \sigma', w > , w \in M \downarrow n$

Isotonic CRF

 $\begin{array}{l}pyx = 1/Z(x) \exp\left(\sum i \widehat{l} \sum \sigma, \tau \widehat{l} \right) \\ y \downarrow i \right) + \sum i \widehat{l} \sum \sigma, w \widehat{l} = \mu \downarrow < \sigma, w > g \downarrow < \sigma, w > (y \downarrow i - 1, x \downarrow i) \end{array}$

"totally agree" is observed in the training data

• $\mu \downarrow < PP$, totally agree> $\geq \mu \downarrow < NN$, totally agree>

 We collect a lexicon compiled from MPQA (Wilson et al., 2005), General Inquirer (Stone et al., 1966), and SentiWordNet (Esuli and Sebastiani, 2006).

Training A Sentiment Classifier

- Authority and Alignment in Wikipedia Discussions (AAWD) corpus (Bender et al., 2011)
- 221 English Wikipedia discussions with positive and negative alignment annotations.

Roadmap

- A dispute corpus constructed from Wikipedia
- Online dispute detection
 - Sentence-level sentiment prediction
 - Dispute detection
- Conclusion

Online Dispute Detection

Sentiment features

- Sentiment distribution
 - *P*(*S*), where *S*∈{*NN*, *N*,*O*,*P*,*PP*}
- Sentiment transition distribution
 - $P(S \downarrow t \rightarrow S \downarrow t+1)$, where $S \downarrow t$, $S \downarrow t+1 \in \{NN, N, O, P, PP\}$

Two versions

- Global version: estimated from whole discussion
- Local version: segment a discussion into three stages equally
 - For future work, we can leverage other topic segmentation techniques.

Online Dispute Detection

- Lexical Features
 - Unigram, bigram
- Topic Features
 - Category information
- Discussion Features
 - Number of turns
 - Number of participants
 - Average number of words in each turn

Experimental Setup

- Logistic regression
- Linear SVM
- RBF kernel SVM
- 5-fold cross-validation

Results

	Precision	Recall	F1	Accuracy
Baseline (Random)	50.0	50.0	50.0	50.0
Baseline (All dispute)	50.0	100.0	66.7	50.0
Logistic Regression	74.8	72.3	73.5	73.9
SVM + Linear	69.8	71.9	70.8	70.4
SVM + RBF	77.4	79.1	78.3	80.0

Results

 \square

	Precision	Recall	F1	Accuracy
Baseline (Random)	50.0	50.0	50.0	50.0
Baseline (All dispute)	50.0	100.0	66.7	50.0
Logistic Regression	74.8	72.3	73.5	73.9
SVM + Linear	69.8	71.9	70.8	70.4
SVM + RBF	77.4	79.1	78.3	80.0

Feature Analysis

	Precision	Recall	F1	Accuracy
Lexical	75.86	34.66	47.58	61.82
Торіс	68.44	71.46	69.92	69.26
Discussion	69.73	76.14	72.79	71.54
Sentiment (Senti _{g+/})	72.54	69.52	71.00	71.60

Feature Analysis

	Precision	Recall	F1	Accuracy
Lexical	75.86	34.66	47.58	61.82
Торіс	68.44	71.46	69.92	69.26
Discussion	69.73	76.14	72.79	71.54
Sentiment (Senti _{g+/})	72.54	69.52	71.00	71.60
Topic + Discussion	68.49	71.79	70.10	69.38
Topic + Discussion + Senti _g	77.39	78.36	77.87	77.74
Topic + Discussion + Senti _{g+/}	77.38	79.14	78.25	80.00
Lexical + Topic + Discussion + Senti $_{g+l}$	78.38	75.12	76.71	77.20

Feature Analysis

	Precision	Recall	F1	Accuracy
Lexical	75.86	34.66	47.58	61.82
Торіс	68.44	71.46	69.92	69.26
Discussion	69.73	76.14	72.79	71.54
Sentiment (Senti _{g+/})	72.54	69.52	71.00	71.60
Topic + Discussion	68.49	71.79	70.10	69.38
Topic + Discussion + Senti _g	77.39	78.36	77.87	77.74
Topic + Discussion + Senti _{g+/}	77.38	79.14	78.25	80.00
Lexical + Topic + Discussion + Senti $_{g+l}$	78.38	75.12	76.71	77.20

Discussions

- Dialog structure varies.
 - The recall for resolved dispute discussions is 0.86; and it is 0.78 for unresolved ones.

- The sentiment classifier has limitations.
 - *"I told you over and over again..."*: neutral or negative?
 - "Wow, I am really enjoying this photography debate!": sarcasm is hard to detect.

Conclusion

- We present a sentiment analysis-based approach to online dispute detection.
- We create a dispute corpus from Wikipedia Talk pages to study the problem.
- Experiments demonstrate that classifiers trained with sentiment tagging features outperform others that do not.

Thank you!

Features for Sentence-Level Sentiment Prediction

- Lexical Features: unigrams/bigrams, number of words all uppercased, number of words
- Discourse Features: initial ngrams, repeated punctuations, number of negators
- Conversation Features: quote overlap with target, TFIDF similarity with target
- Sentiment Features: sentiment words

Evaluation on Sentiment Prediction

	Positive	Negative	Neutral
Baseline (Polarity)	22.53	38.61	66.45
Baseline (Distance)	33.75	55.79	88.97
SVM (3-way)	44.62	52.56	80.84
CRF (3-way)	56.28	56.37	89.41
CRF (5-way)	58.39	56.30	90.10
isotonic CRF	68.18	62.53	88.87