
Copy or Rewrite: Hybrid Summarization with
Hierarchical Reinforcement Learning

Liqiang Xiao1, Lu Wang2, Hao He1,3, Yaohui Jin1,3

1MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
2Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115

3State Key Lab of Advanced Optical Communication System and Network, Shanghai Jiao Tong University
xiaoliqiang@sjtu.edu.cn, luwang@ccs.neu.edu, hehao@sjtu.edu.cn, jinyh@sjtu.edu.cn

Abstract

Jointly using the extractive and abstractive summarization
methods can combine their complementary advantages, gen-
erating both informative and concise summary. Existing
methods that adopt an extract-then-abstract strategy have
achieved impressive results, yet they suffer from the infor-
mation loss in the abstraction step because they compress all
the selected sentences without distinguish. Especially when
the whole sentence is summary-worthy, salient content would
be lost by compression. To address this problem, we pro-
pose HYSUM, a hybrid framework for summarization that
can flexibly switch between copying sentence and rewrit-
ing sentence according to the degree of redundancy. In this
way, our approach can effectively combine the advantages of
two branches of summarization, juggling informativity and
conciseness. Moreover, we based on Hierarchical Reinforce-
ment Learning, propose an end-to-end reinforcing method to
bridge together the extraction module and rewriting module,
which can enhance the cooperation between them. Automatic
evaluation shows that our approach significantly outperforms
the state-of-the-arts on the CNN/DailyMail corpus. Human
evaluation also demonstrates that our generated summaries
are more informative and concise than popular models.

1 Introduction
The target of summarization is to rewrite a long article
into a short and fluent version while maintaining the most
salient content. With the successful application of neural
network on natural language processing (NLP) tasks, two
data-driven branches, extractive and abstractive summariza-
tion (See, Liu, and Manning, 2017; Vinyals, Fortunato, and
Jaitly, 2015; Nallapati, Zhai, and Zhou, 2017), stand out
from the various approaches (Jing and McKeown, 2000;
Knight and Marcu, 2000). Extractive methods (Dong et al.,
2018; Nallapati, Zhai, and Zhou, 2017) generally select the
most salient sentences from the source article as the sum-
mary, which are precise at content selection making the
result informative but suffer from high redundancy since
it does not edit the sentences. In the opposite, abstractive
methods (Paulus, Xiong, and Socher, 2017; Çelikyilmaz et

Copyright c⃝ 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Article: Police in texas unleashed their cowboy skills this week
after a pony broke loose on the highway. Officers were seen
running around armed with lassos as they attempted to catch the
stray shetland foal. The incident took place around 10 am on
tuesday along interstate 35w in fort worth, with traffic backed
up as a result. Action shot : police in texas unleashed their
cowboy skills this week after a pony broke loose on the
highway. Sheriffs were eventually able to corral the pony and
return him to his owner. Video footage of the event shows the
hooved-animal cantering along the tarmac with police cars
following behind.

Human Summary: The incident took place around 10 am on
tuesday along interstate 35w in fort worth , with traffic backed
up as a result.
Officers were attempted to catch the stray shetland foal.
Sheriffs were able to corral the pony and return him to his
owner.

Reference: Officers were seen running around as they
attempted to catch the foal.
The incident took place around 10 am on tuesday along
interstate 35w.
Traffic was backed up as a result.
Sheriffs eventually caught the pony and returned him to his
owner.

C
op

y

R
ew

rit
R
ew

rit

Baseline: Officers were seen running around armed with lassos
as they attempted to catch the stray foal.
Sheriffs were able to corral the pony and return him to his
owner.
The incident took place around 10am on tuesday along
interstate 35w in fort worth.
Police in texas unleashed their cowboy skills this week.

Human Summary:
� For U.S. moms, the typical time between pregnancies is
about 2 1/2 years.
� Experts say mothers should wait at least 18 months to give
their body time to recover and increase the chances the next
child is full-term and healthy.
� The study found that about 30 percent of women who 'd had
a child became pregnant again within 18 months.

C
op

y

R
ew

rite
R
ew

rite

Article:
For U.S. moms , the typical time between pregnancies is about 2
1/2 years but nearly a third of women space their children too
close , a government study shows.
Experts say mothers should wait at least 18 months to give their
body time to recover and increase the chances the next child is
full-term and healthy.
The study released on Thursday by the Centers for Disease
Control and Prevention found that about 30 percent of women
who 'd had a child became pregnant again within 18 months.
…

Human Summary:
� For U.S. moms , the typical time between pregnancies is
about 2 1/2 years.
� Experts say mothers should wait at least 18 months to give
their body time to recover and increase the chances the next
child is full-term and healthy.
� The study found that about 30 percent of women who 'd had
a child became pregnant again within 18 months.

C
op

y

R
ew

rit
R
ew

ri

Article:

For U.S. moms, the typical time between pregnancies is about 2
1/2 years but nearly a third of women space their children too
close, a government study shows.

Experts say mothers should wait at least 18 months to give their
body time to recover and increase the chances the next child is
full-term and healthy.

The study released on Thursday by the Centers for Disease
Control and Prevention found that about 30 percent of women
who 'd had a child became pregnant again within 18 months.
…

Figure 1: Sample summary of an article from the test set of
CNN/DailyMail corpus (Hermann et al., 2015). The words
used in summary are colored. In this sample, one sentence
(green) is directly copied from article and two are rewritten
to be concise.

al., 2018) can generate more concise summary via com-
pressing and paraphrasing, while current models are weak
at content selection and easy to lose crucial information. We
can see that these two branches are complementary to each
other, which motivates us to combine their advantages, gen-
erating both informative and concise summary.

Some effort has been made to combine these two
branches. Most existing works use the extract-then-abstract
framework that first extracts the summary-worthy sentences
and then abstracts each of them (Dong et al., 2018; Mendes
et al., 2019; Chen and Bansal, 2018). However, they suf-
fer from an information loss in abstract stage, since all the
sentence is compressed and pruned without a distinguish.
When the whole sentence is crucial, some important con-
tent would be mistakenly deleted, causing a severe informa-
tion loss. In addition, their training method is not end-to-end

since there lacks an effective reinforcement learning frame-
work to bridge together two modules.

In this paper, we introduce HYSUM, a novel hybrid
framework that can flexibly switch between copy (original)
and rewriting according to the degree of sentence redun-
dancy. By distinguishingly copying the succinct sentences
and rewriting the redundant ones, the information loss would
be reduced. In this way, our method can effectively com-
bine the strengths of both extractive and abstractive summa-
rization methods, generating informative and concise sum-
maries. Our strategy can improve the performance because
it is more aligned with how human summarize a long arti-
cle. Figure 1 shows the human behavior in summarization
that some redundancy sentences are rewritten but others are
kept unchanged.

Concretely, we construct our framework with a two-
step approach. As shown in Figure 2, we first extract the
salience sentences from the input article, with a copy-or-
write mechanism to distinguish the sentences according
to the redundancy. Then, the final summary is generated
by correspondingly copying or rewriting the selected sen-
tences. Moreover, we based on Hierarchical Reinforce-
ment Learning, propose an end-to-end training method to
bridge two independent steps, which can enhance the coop-
eration of them, dynamically adapt them to each other dur-
ing training.

We use both automatic and human evaluation to test our
framework on popular CNN/DailyMail corpus. Experimen-
tal results indicate that our methods significantly outperform
the state-of-the-art summarization models. Human judges
also prefer the summaries generated by our method and
think they are more informative and concise.

The contributions of this paper are threefold:

• A novel framework is proposed, which can switch be-
tween copying and rewriting to effectively combine the
advantages of extractive and abstractive summarization.
To the best of our knowledge, we are the first to mix ex-
tracted and abstracted sentences in summary.

• We design an end-to-end reinforcement learning method
for the two-step systems, which can enhance the coopera-
tion of two modules.

• Our method achieves a new state-of-the-art on
CNN/DailyMail corpus, and human evaluation also
verifies the informativeness and conciseness of our
results.

2 Summarization Framework
As shown in Figure 2, HYSUM is comprised of two steps:
(1) extraction, that first encodes each sentence into a vector
with hierarchical BERT representation, and then determines
to copy or rewrite which sentences. (2) sentence abstraction,
that further distills the content when simplification or para-
phrase is necessary to output the final summary. These two
steps are independent of parameter, and they learn to coop-
erate with each other via reinforcement learning.

Notation We denote each article A = {si} as a sequence
of sentences, and a sentence si = {wm} as a sequence of

words. We embed each word wm into a vector we
m and then

represent the whole sentence into a n-dimensional vector
hi. Extractor E(·) calculates the possibility pext(si) of each
sentence to be chosen and generate a subsequence {sjt} that
contains the most important sentences. Part of the chosen
sentences are further edited by rewriter W (·) to generate the
final summary Ỹ = {ỹt} as a prediction for the human sum-
mary Y = {yt}.

2.1 Hierarchical BERT Representation

Context and position information have been proven very
important for the sentence selection. BERT (Bidirectional
Encoder Representation from Transformers) (Devlin et al.,
2019) has obtained a widely success on many downstream
tasks with the strength of representation ability. BERT as
an improvement for transformer, can generates bidirectional
representation by jointly conditioning on both left and right
context with long-distance dependencies. Also its position
embedding also effectively injects the position information
into the vectors. Therefore, we employ BERT and propose
a Hierarchical BERT Representation method for sentence
encoding, which is constructed by two stacked BERT net-
works to embed more context and position information in
both word- and sentence- level. This design is also compati-
ble for LSTM, so in experiment we replace BERT with and
1-layer BiLSTM as the baseline for BERT.

Word Context Embedding Unlike previous work that
encode each sentence separately (Chen and Bansal, 2018;
Zhang et al., 2018; Dong et al., 2018), we first feed the en-
tire article into a pretrained BERT1, which gives each word
a wide range of context helping more precisely represent the
meaning. Then the word representation is obtained by con-
catenating the last four layers and passing a MLP layer. This
step injects context and also the word position in the whole
article into the word vectors.

Sentence Context Embedding We obtain the preliminary
representation for each sentence si by a mean pooling opera-
tion over the word vectors hi =

1
|si|

∑
we

m∈si
we

m, where | · |
denotes the length. Then, to embed sentence positions infor-
mation and sentence-level context into the representations,
we further feed them into a one-layer BERT and obtain the
final sentence vectors hi.

2.2 Extraction with Copy-or-Rewrite Mechanism

In this section we first introduce the basic extraction network
for sentence selection, and then propose a copy-or-rewrite
mechanism to determine whether to copy or rewrite each
sentence.

Given the sentence vectors, we employ a pointer network
(Vinyals, Fortunato, and Jaitly, 2015) to extract the article
sentences that cover the most important information for the
summary. At each time step t, we first calculate a sentence

1We use ‘base-bert-cased’ version for pretrained BERT pro-
vided by https://github.com/huggingface.

Hierarchical Representation

++++++++

LSTM LSTM LSTM

1 For the first time in 75 years …

2 NASA images showing …

3 California depends on the snow …

4 Gov. Brown ordered sweeping, …
1 For the first time in 75 years …

4 Gov. Brown saves water in the state …

2 Images shows that snowpack across …

Article Summary

Copy Rewrite Rewrite

h1 h2
s1 s4 s2

h3 h4

h4c h4rh3rh3ch2c h2rh1rh1c

+mr+mc h1c h4r h2r
Extraction

Abstraction

++

1

2
3

+mr+mc +mr+mc +mr+mc

Sentence

Vectors:

Pointer Network

Add

Markers:

Vector

Versions:

Figure 2: The overview of the HYSUM framework. Hierarchical representation module first encodes the article sentences si into
vectors hj . Then each sentence vector becomes two versions by adding with two different markers mc,mr. When the pointer
network (arrows denote attention and darker color represents higher weights) selects the copy version hc

i of a sentence, it will
be copied. Otherwise when the rewriting version hr

i is selected, the sentence will be rewritten to reduce redundancy.

context vector et based on the glimpse operation.

ati = v⊤
s tanh(Whhi +Wzzt) (1)

αt = softmax(at) (2)

et =
∑
t

αt
iWhhi (3)

where αt are attention weights, zt is the hidden state of
LSTM and Wh,Wz,vs are trainable parameters. Then ex-
traction possibility for each sentence is calculated by:

ut
i = v⊤

p tanh(W′
hhi +Weet) (4)

Pext(s
t
i) = softmax(ut) (5)

where the sentence sti with the highest possibility is selected.
The extraction proceeds until the model selects the end-of-
extraction token.

For the pretraining stage, the loss is calculated by
cross entropy to maximum the log-likelihood: Lext =

− 1
T

∑T
t logPext(s

∗
jt
|s∗j1 , · · · , s

∗
jt−1

, A), where s∗jt is the
t-th sentence in the ground-truth extraction sequence
(s∗j1 , · · · , sjT ∗) that is built with Equation (19).

Copy-or-Rewrite Mechanism It has been proven that
rewriting all the selected sentences without distinguish hurts
the performance (Chen and Bansal, 2018)2. So we endow
our extraction module with the ability to distinguish what
sentences should be copied and what should be rewritten.
There are two difficulties to overcome. First, it is hard to
build a ground-truth to supervise the decision prediction, be-
cause we cannot know whether rewriting or copy leads to

2Their model with sentence rewriting is inferior to the their pure
extraction version.

the better overall ROUGE scores. Hence, we let the model
learn the decision pattern by exploration in reinforcement
learning. Second, reinforcement learning algorithm based on
MDPs (Markov Decision Processes) supports only one ac-
tion space, but our framework requires two, sentence selec-
tion and copy/rewrite decision making. To overcome this, we
fuse two action spaces together with a novel copy-or-rewrite
mechanism, taking two kinds of actions simultaneously.

As illustrated in Figure 2, after the sentence representa-
tion, we duplicate the sentences vectors {hi} and add two
different markers (mc,mr) to them respectively:

hc
i = hi +mc (6)

hr
i = hi +mr (7)

in which the markers are trainable parameters to help the
model distinguish two different operations for each sen-
tence. Now each sentence has two different versions of vec-
tor. When the pointer network selects the copy version hc

i
for a sentence, it will be directly added to summary without
any edition. In the opposite, if the rewriting version hr

i is
selected, the sentence would be rewritten (compress or para-
phrase) to reduce the redundancy. In this way, we success-
fully merge two action spaces into one, making it suitable
for current reinforcement learning.

Because most of the sentences need to be rewritten, at the
start of training copy marker may lack of update. We find
it is very easy for the model to generate a bias, tending to
rewrite all the sentences. Therefore we propose two different
approaches to make a balance between copy and rewriting.

Unbalanced Marker The first way is to use the relative
scale of the makers to effect the choose. Since the markers
are not pretrained, they can be regarded as a kind of noise for
the representation vectors, which generates a slightly nega-
tive effect at the start of RL training. So we scale up the

relative magnitude of rewriting marker |mr| = γ · |mc| to
offset its starting advantage. Different magnitude is searched
in the range of [100, 105] and optimal setting is 102.

Copy-or-Rewrite History See, Liu, and Manning (2017)
proposes a coverage mechanism for sentence generation,
which tells model the attention history to help model attend
on the non-selected items. Inspirited by this, we also try to
feed the attention history into network to let the model know
how much sentence has been copied or rewritten. The atten-
tion accumulation of copy and rewriting before time step t
on all I sentences is calculated by:

φc
t =

I∑
i=0

t−1∑
t′=0

Pext(h
c
i) (8)

φr
t =

I∑
i=0

t−1∑
t′=0

Pext(h
r
i) (9)

where φc
j , φr

j are the attention accumulation of copy and
rewriting respectively. We concatenate them up φt = φc

t ⊕
φr
t and let them participate in the computation of attention

score, and Equation (1)(4) can be revised to

ati = v⊤
s tanh(Whhi +Wzzt +Wφφt) (10)

ut
i = v⊤

p tanh(W′
hhi +Weet +W′

φφt) (11)

where Wφ,W
′
φ are trainable parameters.

2.3 Sentence Abstraction
This step follows the extraction decisions to copy or rewrite
the corresponding sentences, generating the final summary.
They copy operation aims to preserve all the information
when the extracted sentence is already concise enough, and
rewriting operation is employed to simplify or paraphrase
the sentence that is redundant. To implement the latter, we
use a vanilla encoder-aligner-decoder network (Bahdanau,
Cho, and Bengio, 2014) with the copy mechanism (See, Liu,
and Manning, 2017) to predict the out-of-vocabulary words.

In the pretraining stage of rewriter network, the loss for
rewriting each ground-truth extracted sentence s∗jt is calcu-
lated with cross-entropy:

Labs = − 1

M

M∑
i=1

logPabs(y
i∗
t |y1∗t , · · · , yi−1∗

t , s∗jt) (12)

where the yi∗t denotes the i-th words in sentence of human
summary and M denotes the length of sentence.

3 Hierarchical Reinforcement Learning
Widely-used reinforcement learning (RL) methods such as
REINFORCE (Williams, 1992) are not suitable for the two-
step models that have two different agents. Hence, previous
extract-then-abstract based models (Chen and Bansal, 2018;
Zhang et al., 2018) only reinforce their extractor and fix the
abstractor. This kind of training method is not end-to-end, so
that the networks are not globally optimized due to the lack
of RL training for abstractor.

w w w w w w

m m

… … …

at at+1 at+2

rm (at) rm (at+1) rm (at+2)Manager

(Extraction)

Worker

(Sentence

Abstraction)

Rt
m Rt+1

m Rt+2
m Rt+3

m
+ +

rw (!y t) rw (!y t+1) rw (!y t+2)tasks

m +

Figure 3: Architecture of our hierarchical reinforcement
learning and reward composition (green lines) of extraction.

Therefore we based on Hierarchical Reinforcement
Learning (HRL) framework (Vezhnevets et al., 2017; Dayan
and Hinton, 1992), propose a simple end-to-end RL train-
ing method for the two-step systems. HRL typically takes
a two-level architecture, which consists of (1) a manager at
higher-level that assigns larger-grained tasks, (2) a worker
at lower-level that selects specific actions to complete the
given tasks. (3) an internal critic to distinguish whether the
worker completes current task.

In our HRL method, we regard the extraction module as
the manager that operates on sentence-level, and the sen-
tence abstraction module as the worker that runs on word-
level. The tasks are the selected sentences and copy-or-
rewrite decision. The difference of our HRL methods with
previous works is that it simplifies the training process by
removing the internal critic and letting the worker itself to
determine when the task is accomplished. Besides, we con-
sider the reward of worker when estimating the reward of
the manager, which more precisely describes the effect of
manager actions.

3.1 Extraction Training
We analogize the extraction process with Markov Decision
Processes (MDPs). At each step t, the manager agent πθm
takes an action at with its policy πθm(at, ct) according to the
current state ct = {A, at−1}. Then, the worker receives the
selected sentence and copies/rewrites it to generate a sum-
mary sentence ỹt. The objective of manager is to minimize
the negative discounted return Rm

t , in formula

▽θmL(θm) = −▽ logπθm(at|ct)Rm
t (at) (13)

where return Rm
t (at) = rm(at) + λRm

t+1(at+1) is the sum
of reward after time t with discount λ. Because the action
of manager also affects the performance of worker, we also
consider the worker’s reward rw(ỹt) to more precisely de-
scribe the effect of manager’s action. Then the return turns
to Rm

t (at) = rm(at) + λRm
t+1(at+1) + βrw(ỹt), and Equa-

tion (13) can be revised to

▽θmL(θm) =−▽logπθm(at|ct)[rm(at) + λRm
t+1(at+1)

+ βrw(ỹt)] (14)

Usually, directly maximizing the return would suffer from
a high variance, so we reduce the variance by adding a base-
line as follows:

▽θmL(θm) =−▽logπθm(at|ct)[rm(at) + λRm
t (at+1)

+ βrw(ỹt)− bmt] (15)

where bmt is an arbitrary baseline function independent from
the action. Baseline is an approximation for the state-value
function V πθ (ct). In order to predict the baseline, we follow
the A2C (Advantage Actor-Critic) algorithm, constructing a
critic network to predict it and optimizing its with a mean
square error (MSE) loss Lb = (bmt −Rm

t)2.

Marginal Reward Directly using ROUGE score as the re-
ward for each extracted sentence is not global optimized, be-
cause it cannot accurately evaluate the contribution of each
step to the overall summary. So we use margin reward to
compute a incremental score for each extracted sentence,
which ensures that each sentence contribute novel informa-
tion to the whole summary.

rm(at) = ROUGE(a1:t, Y)− ROUGE(a1:t−1, Y) (16)

where a1:t denotes the concatenation of selected sentences
from time step 1 to t and Y = {yt} denotes the overall hu-
man summary. For the score function ROUGE, we find that
using only ROUGE-L as (Paulus, Xiong, and Socher, 2017)
will depress the ROUGE-2 score. So we combine multiple
metrics to make a balance 3:

ROUGE(x, y) =
1

3
ROUGE-1F1(x, y) + ROUGE-2F1(x, y)

+ ROUGE-LF1
(x, y) (17)

3.2 Sentence Abstraction Training
When training the worker, we assume manager has Ora-
cle policy and update worker’s parameter with policy gra-
dient described in Eq. (13). For baseline, following (Paulus,
Xiong, and Socher, 2017) we employ self-critic training al-
gorithm to use greedily-decoded sentence as baseline.

At each step t for rewriting, two output sequences ŷt, ỹt
are generated, where the ŷt is sampled from the probabil-
ity distributions and ỹt is greedily generated by argmax at
each time step to be the baseline. The sampled actions that
get more reward rw(·) are encouraged via the following loss
function.

Labs = −(rw(ŷt)− rw(ỹt))

N∑
i=1

log pθw(ŷ
i
t) (18)

where ŷit denotes the i-th word in sampled sequence, and the
reward is defined as rw(ŷt) = ROUGE(ŷt, yt).

4 Experiment
In this section, we verify our methods on the most popular
dataset CNN/DailyMail, so that we can make a fully com-
parison with the state-of-the-art works.

4.1 Dataset and Ground-Truth Construction
We evaluate our approach on the summarization corpus
CNN/Daily Mail, which is comprised of news stories and
is first proposed by Hermann et al. (2015). We use the non-
anonymized version that does not replace the name entities,

3ROUGE-1 and ROUGE-L are strongly connected, so we lower
the coefficient of ROUGE-1 to avoid bias.

since it is the most frequently used version in recent works.
We follow the processing steps in (See, Liu, and Manning,
2017), obtaining 287,188 training, 13,367 validation and 11,
490 testing samples.

To pretrain two steps of HYSUM as a warmup for the RL
training. We align each reference sentence yt to an article
sentence by

sjt = maxsi∈A(ROUGE-Lrecall(si, yt)) (19)

Selected sentences sjt are used to supervise the extraction
modules and sentence pairs (sjt , yt) are used for rewriter
training.

4.2 Training Details and Evaluation Method
The word vectors (Mikolov et al., 2013) are pretrained on
the whole dataset with 128 dimension. And all the LSTM
networks in our framework use 256 hidden units. Adam op-
timizer (Kingma and Ba, 2014) is applied with a learning
rate 0.001 for extractor and 0.0001 for rewriter, and the mini-
batches size is set to 32. We also decrease the learning rate
during training to make a better convergence. In RL train-
ing stage, we set the discount factor λ as 0.95 for return
and coefficient β as 0.9 with grid search. During reference,
we apply the beam search (Pasunuru and Bansal, 2018) with
width 5 on rewriter to avoid trigram repetition.

We evaluate our method with standard ROUGE-1,
ROUGE-2 and ROUGE-L (Hsu et al., 2018) on full-length
F1. We finally choose the models achieving the highest
ROUGE-L score on validation set and report the perfor-
mance on test set. We also follow See, Liu, and Man-
ning (2017) to evaluate results on METEOR (Denkowski
and Lavie, 2014) that considers synonyms, paraphrases, and
stemming for a more comprehensive comparison.

4.3 Results
Automatic Evaluation We report the results of our model
in Table 1. Our model significantly outperforms (p < 0.001)
all the competitors on ROUGE-1, ROUGE-L and METEOR.
HYSUM with HRL training (Copy/Rewrite + History +
HRL) improves the ROUGE-1 and ROUGE-L scores by
0.96 and 0.65 respectively over the best previous work,
which proves the effectiveness of our copy-or-rewrite frame-
work and the new training method. Moreover, we also in-
vestigate the efficacy of pre-trained language model, which
recently shows an extensive success on many downstream
tasks. By equipping the model with the hierarchical BERT
representation, our model obtains the highest scores on all
four metrics, which creates a new state-of-the-art result for
the summarization task on CNN/DailyMail corpus. This in-
dicates that our hierarchical structure for using pretrained
BERT is effective.

Ablation Study We also conduct some ablation studies in
Table 1 to verify the effectiveness of each component. For
copy-or-rewrite mechanism, we build two baseline mod-
els, Copy+EXT-RL and Rewrite+EXT-RL, which have only
copy (i.e. the pure extraction model) or rewriting operation
and only the extractor is reinforced. The fact that only-copy

Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
Extract-based Models
SummarRuNNer (Nallapati, Zhai, and Zhou, 2017) 39.60 16.20 35.30 -
RankingRL (Narayan, Cohen, and Lapata, 2018) 40.0 18.2 36.6 -
BANDITSUM (Dong et al., 2018) 41.5 18.7 37.6 -
Abstract-based Models
PointerGen+Coverage (See, Liu, and Manning, 2017) 39.53 17.28 36.38 18.72
DeepRL (Paulus, Xiong, and Socher, 2017) 39.87 15.82 36.90 -
Inconsistency Loss (Hsu et al., 2018) 40.68 17.97 37.15 -
Fast-RL (Chen and Bansal, 2018) 40.88 17.80 38.54 20.38
Bottom Up (Gehrmann, Deng, and Rush, 2018) 41.22 18.68 38.34 19.42
DCA† (Çelikyilmaz et al., 2018) 40.91 19.21 38.03 18.13
Our Results
Rewrite + EXT-RL 40.73 17.85 38.26 19.05
Copy + EXT-RL 41.48 18.75 37.79 21.71
Copy/Rewrite + Unbalanced Marker + EXT-RL 42.10∗ 18.91 38.87 20.69∗

Copy/Rewrite + History + EXT-RL 41.98∗ 18.96 38.83 21.91∗

Copy/Rewrite + History + INDEPENDENT-RL 42.21∗ 18.91 38.94∗ 21.16∗

Copy/Rewrite + History + HRL 42.46∗ 19.10 39.19∗ 21.88∗

Copy/Rewrite + History + HRL + BERT 42.92∗ 19.43∗ 39.35∗ 22.12∗

Table 1: Results on CNN/DailyMail. The best scores are in bold, and significantly better scores than the baselines are marked
with ∗ (p < 0.001, t-test). EXT-RL denotes the RL training on extraction module, and BERT denotes the hierarchical BERT
representation. †: We re-evaluate DCA output against full human summaries, and the difference on ROUGE-2 score to our HRL
model is not significant. (p = 0.517).

0

20

40

60

80

3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 33000

C
op

y
Ra

te
 (%

)

Unbalanced 10 Unbalanced 100
Unbalanced 1000 History

Figure 4: Copy rate learning curve of two balancing mecha-
nisms. Unbalanced 100: |mr| = 102|mc|; Unbalanced 1000:
|mr| = 103|mc|.

version outperforms only-rewrite version verifies the knowl-
edge that rewriting all selected sentence causes information
loss. By combining both operations (Copy/Rewrite + EXT-
RL), there is an exciting improvement on all metrics, which
proves that jointly using copy and rewriting operations can
extremely preserve the summary-worthy content, avoiding
information loss.

Unbalanced Marker and History mechanism obtain
very similar performance. They are both capable of reduc-
ing the bias of extractor. But interestingly they learn the copy
rate in totally different ways. As Fig. 4 shows, unbalanced
marker mechanism learns to copy gradually from zero, while
the history mechanism starts with randomly choose (50%)
and converges towards the optimized rate. Finally both of
them approach a copy rate of about 28%. The consistency of
them proves this is best rate for the data distribution.

HRL Training’s advantage is not only from reinforcing
the rewriter, but also from the improvement for the coopera-
tion between two modules. To prove this, we build a baseline
that separately reinforces two networks (Copy/Rewrite +

Info. Con. Read.
Fast-RL 2.83 3.1 3.86
HYSUM (ours) 3.21 3.83 4.09
HYSUM + BERT (ours) 3.40 3.85 4.11

Table 2: Human evaluation on informativity (Info.), concise-
ness (Con.) and readability(Read.). Best results among all
methods are in bold.

History + INDEPENDENT-RL). Unsurprisingly, it has only
a slight improvement over the extraction reinforced model
(Copy/Rewrite + History + EXT-RL), which indicates the
importance of the end-to-end training method like HRL for
a two-agent system.

Human Evalution We perform human evaluation to es-
tablish that the improvements on ROUGE are correlated
with human judgments. We compare our model with HRL
training to Fast-RL (Chen and Bansal, 2018), which ex-
tracts and compresses every sentence. We employ follow-
ing factors as evaluation criterias for decoded summaries to
show the benefits of our framework: informativity, concise-
ness and readability. We randomly select 50 samples from
the CNN/DailyMail test set and hire 3 workers as judges to
evaluate the generated summaries. We show the judges the
original article and two model outputs and ask them to score
the each summary from 1(worst) to 5(best). For each sam-
ple, summaries are shuffled to make a fair comparison. We
average the scores across all the samples and judges, and the
results are reported in Table 2.

Human judges significantly prefer the summaries gener-
ated by our model, and give higher scores on all three eval-

Human Summary: Nicholas dematteis, 39, flew into a rage while at
restaurant bocca east during brunch on saturday afternoon. He demanded
free meal around 4 pm because of slow service, police said. Witnesses
said he spewed homophobic slur at a manager before grabbing him by
the neck and slamming him into bar and hurling him into woman. He has
been arrested and charged with assault following the incident.

Baseline Models:
Fast-RL: Nicholas dematteis flew into the rage while at restaurant
bocca east. Dematteis was arrested and charged with assault following
the incident. The 34-year-old manager made attempts to calm dematteis
down. Nicholas dematteis, 39, flew into the rage while waiting an hour
and a half. New york diner lost his cool grabbing a restaurant manager
by the neck.
Bottom-up: Nicholas dematteis, 39, flew into the rage after waiting
more than an hour for his omelette. Dematteis was arrested and charged
with assault following the incident on saturday. Dematteis was
previously arrested earlier this year in january for breaking into his
girlfriend 's apartment.

Pointer-Generator (with coverage): nicholas dematteis , 39 , flew into the rage while at restaurant bocca east during brunch on
saturday afternoon .
demanded a free meal around 4pm because of slow service , police said .
dematteis was arrested and charged with assault following the incident , according to the new york daily news .

HYSUM: [copy]Nicholas dematteis, 39, flew into the rage while at
restaurant bocca east during brunch on saturday afternoon, and
demanded a free meal around 4 pm because of slow service, police said.
[rewrite]Dematteis was arrested and charged with assault following the
incident. [rewrite]He grabbed his restaurant manager by the neck before
slamming him against a bar and into an elderly woman.

Baseline Models:
Fast-RL: Nicholas dematteis flew into the rage while at restaurant bocca east. Dematteis was arrested and charged with assault
following the incident. The 34-year-old manager made attempts to calm dematteis down. Nicholas dematteis, 39, flew into the rage
while waiting an hour and a half. New york diner lost his cool grabbing a restaurant manager by the neck.
Bottom-up: Nicholas dematteis, 39, flew into the rage after waiting more than an hour for his omelette. Dematteis was arrested and
charged with assault following the incident on saturday. Dematteis was previously arrested earlier this year in january for breaking
into his girlfriend 's apartment.

Figure 5: Summary comparison with the baseline models.
Overlapped content is colored. Our model overlaps the most
with human summary and generates less redundancy.

uation dimensions. The largest advantage of our model is
on the dimension of informativity and conciseness, because
by copying original sentences our model can reserve all the
important information when the whole sentence is crucial,
avoiding information loss, and via reinforcing the rewriter,
our model obtains a stronger abstraction ability, making the
generated summary more concise.

Case Study Figure 5 illustrates several summaries gener-
ated on the test set. We can see that HYSUM is better on
selection, which covers more content appearing in human
summary. Especially for the first sentence, HYSUM chooses
to copy the whole sentence, which to the most extend avoids
the information loss by abstraction. In the opposite, the base-
line Fast-RL, as an extract-then-abstract model, correctly se-
lects the first sentence, but further compression discards the
second half the sentence, which losses important informa-
tion. Besides, the output from model Bottom-up is redundant
since pure abstractive model is week in content selection.

5 Related Work
In this section, we introduce the related work from two
threads: 1) the combination of extractive and abstractive
summarization; 2) the usage of reinforcement learning in the
summarization.

Combining the two branches of summariztion, extraction
and abstraction, has become popular in summarization task
and some extract-then-abstract models are proposed. They
first identify the salient sentences and then abstract the se-
lected together (Nallapati, Zhai, and Zhou, 2017; Sharma et
al., 2019) or one by one (Chen and Bansal, 2018; Dong et al.,
2018). These models make an improvement because they ex-
ploit the complementarity of two branches of summarization
that 1) extractive models (Cheng and Lapata, 2016) excel at

content selection but cannot remove the redundancy; 2) ab-
stractive models (Nallapati et al., 2016) can simplify or para-
phrase the sentence, but it is week in content selection. How-
ever, rewriting all the sentence without distinguish hurts the
performance, which has been proved in (Chen and Bansal,
2018) that their rewriting model is inferior to pure extraction
model. This is because some sentences are already concise
enough and compressing or paraphrasing them with unper-
fect rewriter would lost some key information. Therefore,
we propose a hybrid framework that can distinguish the sen-
tences and allow using raw sentences in summary. To the
best of our knowledge, we are the first to mix the extractive
and abstractive sentences in summary.

Reinforcement learning has been introduced into se-
quence generation task to directly optimize the non-
differential metrics and generation quality by alleviating the
‘exposure bias’. Dong et al. (2018); Narayan, Cohen, and
Lapata (2018); Hermann et al. (2015) use policy gradient
to improve their extractive models and Paulus, Xiong, and
Socher (2017); Çelikyilmaz et al. (2018) employ weighted
ML+RL loss to reinforce their abstractive encoder-decoder
models. Unfortunately, rare end-to-end reinforcement learn-
ing method is proposed for two-step models. Current two-
step models only reinforce one network and fix the other
e.g. (Gu et al., 2016) for translation, (Choi et al., 2017)
for question answer and (Chen and Bansal, 2018; Zhang et
al., 2018) for summarization. This is not globally optimized
and lacks mutual adaption between two networks. There-
fore a gap exists between the reinforcement learning and
the two-step models proposed for language generation. In
this work, we propose a hierarchical reinforcement learning
approach, which can reinforce the whole framework end-
to-end and enhance the cooperation of two networks. Our
training method is for summarization but also is appliable
for similar two-step systems.

6 Conclusion
In this paper, we propose a novel hybrid summarization
framework, which for the first time mixes the extracted
and abstracted sentences in the summary. A copy-or-rewrite
mechanism is designed to distinguish the sentences that can
be directly used in summary and the sentences that need to
be rewritten. Moreover, we propose an end-to-end hierar-
chical reinforcement learning method for training two-step
models, which uses extracted sentence as the task from man-
ager to worker, extremely improving the cooperation be-
tween two networks.

Acknowledgements
This research is supported in part by National Key Re-
search and Development Program of China under Grant
2018YFC0830400 and National Natural Science Founda-
tion of China under Grant 61575123. Lu Wang is supported
in part by National Science Foundation through Grants
IIS-1566382 and IIS-1813341. We also thank Sebastian
Sehrmann and Asli Celikyilmaz for sharing their summaries
on CNN/DM.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-

chine translation by jointly learning to align and translate.
CoRR abs/1409.0473.

Çelikyilmaz, A.; Bosselut, A.; He, X.; and Choi, Y. 2018.
Deep communicating agents for abstractive summariza-
tion. In Proceedings of the 2018 Conference of the
NAACL-HLT, 2018, 1662–1675.

Chen, Y., and Bansal, M. 2018. Fast abstractive summariza-
tion with reinforce-selected sentence rewriting. In Pro-
ceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, ACL 2018, 675–686.

Cheng, J., and Lapata, M. 2016. Neural summarization by
extracting sentences and words. In Proceedings of the
54th Annual Meeting of the ACL 2016.

Choi, E.; Hewlett, D.; Uszkoreit, J.; Polosukhin, I.; Lacoste,
A.; and Berant, J. 2017. Coarse-to-fine question answer-
ing for long documents. In Proceedings of the 55th An-
nual Meeting of the ACL 2017, 209–220.

Dayan, P., and Hinton, G. E. 1992. Feudal reinforcement
learning. In Advances in Neural Information Processing
Systems 5, [NIPS Conference, 1992], 271–278.

Denkowski, M. J., and Lavie, A. 2014. Meteor univer-
sal: Language specific translation evaluation for any tar-
get language. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, ACL 2014, 376–380.

Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Con-
ference of the NAACL-HLT 2019, 4171–4186.

Dong, Y.; Shen, Y.; Crawford, E.; van Hoof, H.; and Cheung,
J. C. K. 2018. Banditsum: Extractive summarization as a
contextual bandit. In Proceedings of the 2018 Conference
of the EMNLP, 2018, 3739–3748.

Gehrmann, S.; Deng, Y.; and Rush, A. M. 2018. Bottom-
up abstractive summarization. In Proceedings of the 2018
Conference of the EMNLP, 2018, 4098–4109.

Gu, J.; Lu, Z.; Li, H.; and Li, V. O. K. 2016. Incorporating
copying mechanism in sequence-to-sequence learning. In
Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2016.

Hermann, K. M.; Kociský, T.; Grefenstette, E.; Espeholt, L.;
Kay, W.; Suleyman, M.; and Blunsom, P. 2015. Teaching
machines to read and comprehend. In Advances in Neural
Information Processing Systems 28: NIPS 2015.

Hsu, W. T.; Lin, C.; Lee, M.; Min, K.; Tang, J.; and Sun,
M. 2018. A unified model for extractive and abstractive
summarization using inconsistency loss. In Proceedings
of the 56th Annual Meeting of the ACL 2018, 132–141.

Jing, H., and McKeown, K. R. 2000. Cut and paste based
text summarization. In 6th Applied Natural Language
Processing Conference, ANLP 2000, 178–185.

Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.

Knight, K., and Marcu, D. 2000. Statistics-based summa-
rization - step one: Sentence compression. In InProceed-
ings of the 2000 AAAI Conference on Artificial Intelli-
gence,, 703–710.

Mendes, A.; Narayan, S.; Miranda, S.; Marinho, Z.; Mar-
tins, A. F. T.; and Cohen, S. B. 2019. Jointly extracting
and compressing documents with summary state repre-
sentations. In Proceedings of the 2019 Conference of the
NAACL-HLT 2019, 3955–3966.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In 27th Annual Con-
ference of NeurlPS 2013., 3111–3119.

Nallapati, R.; Zhou, B.; dos Santos, C. N.; Gülçehre, Ç.; and
Xiang, B. 2016. Abstractive text summarization using
sequence-to-sequence rnns and beyond. In Conference
on Computational Natural Language Learning, CoNLL
2016, 280–290.

Nallapati, R.; Zhai, F.; and Zhou, B. 2017. Summarun-
ner: A recurrent neural network based sequence model for
extractive summarization of documents. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017, 3075–3081.

Narayan, S.; Cohen, S. B.; and Lapata, M. 2018. Ranking
sentences for extractive summarization with reinforce-
ment learning. In Proceedings of the 2018 Conference
of the NAACL-HLT 2018, 1747–1759.

Pasunuru, R., and Bansal, M. 2018. Multi-reward reinforced
summarization with saliency and entailment. In Proceed-
ings of the 2018 Conference of the NAACL-HLT, 2018,
646–653.

Paulus, R.; Xiong, C.; and Socher, R. 2017. A deep re-
inforced model for abstractive summarization. CoRR
abs/1705.04304.

See, A.; Liu, P. J.; and Manning, C. D. 2017. Get to the
point: Summarization with pointer-generator networks. In
Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017.

Sharma, E.; Huang, L.; Hu, Z.; and Wang, L. 2019. An
entity-driven framework for abstractive summarization.

Vezhnevets, A. S.; Osindero, S.; Schaul, T.; Heess, N.; Jader-
berg, M.; Silver, D.; and Kavukcuoglu, K. 2017. Feudal
networks for hierarchical reinforcement learning. In Pro-
ceedings of the 34th of the ICML 2017, 3540–3549.

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In Advances in Neural Information Processing
Systems 28: NIPS 2015, 2692–2700.

Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8:229–256.

Zhang, X.; Lapata, M.; Wei, F.; and Zhou, M. 2018. Neural
latent extractive document summarization. In Proceed-
ings of the Conference of EMNLP, 2018, 779–784.

