
Get the Key Points: Summarization by Grouping Sentences

Bohan Zhang
University of Michigan
zbohan@umich.edu

Yujian Liu
University of Michigan
yujianl@umich.edu

1 Problem Description

Text summarization task aims to automatically gen-
erate a summary for a given document. The input
is a long document and corresponding summary
usually consists of few sentences. There are mainly
two methods of summarization: extraction and ab-
straction. The extractive method directly selects
salient sentences from the document as the sum-
mary whereas the abstractive method rewrites and
compresses the document into a shorter one as the
summary. These two methods can also be com-
bined in an extract-then-abstract way where salient
sentences in the source article are extracted first
and then rewritten to the summary.

2 Related Work

Extractive and abstractive methods have both been
popular in text summarization task. They handle
the task in two different ways. Extractive meth-
ods form the summary by extracting salient content
(Kupiec et al., 1995), and abstractive methods gen-
erate the summary by rewriting like humans (See
et al., 2017). Recently, some works try to com-
bine these two methods in an extract-then-abstract
way to get advantages of both (Sharma et al., 2019;
Chen and Bansal, 2018; Dong et al., 2018; Xiao
et al., 2020).

In this project, we also follow the extract-then-
abstract framework. However, most previous work
extract one sentence at each decoding time step
and rewrite them independently. Consequently,
they tend to ignore that sources sentences can be
fused together to generate a summary, which re-
sults in a less coherent summary. We attempt to
tackle this problem from two ends: In extraction
part, we enable the extractor to extract multiple
sentences at one decoding step. Then in abstraction
part, we group the multiple extracted sentences
at one decoding time together and rewrite and

compress them to a summary sentence. A recent
work(Lebanoff et al., 2019) proposes a sentence
fusion based summarization. However, they have
to inefficiently predict over all sentence pairs in the
source article and rank them in a order that is not
necessary to be the coherent order of the source ar-
ticle. Also, they are not able to fuse more than two
sentences. Our model won’t require examination
over all source sentence pairs but just enable de-
coding multiple sentences at one time sequentially.

3 Methodology

We will introduce the architecture of our model
in this section. We also propose a new method to
extract multiple matched original sentences of each
summary sentence to train the extractor.

3.1 Data Pre-processing
We use the CNN/Daily Mail news dataset(Hermann
et al., 2015). It includes 287226 training, 13368
validation and 11490 test pairs. We start by manu-
ally labeling 50 documents to verify the many-to-
one relation between original document sentences
and summary sentences. For each summary sen-
tence, we label the associated sentences in original
document. We found 26.7% summary sentences
are fused from multiple original sentences and 70%
summaries contain at least one fused sentence. This
demonstrates that sentence fusion is a common phe-
nomenon in human written summaries, and it is
important for the model to be able to fuse multiple
original sentences into one summary sentence.

We then build a key-word-driven label construc-
tion method. For each summary, we extract its
keywords using tf-idf (Ramos et al., 2003) based
approach. We randomly sample 10,000 summaries
as a training corpus and train a tf-idf transfor-
mation model in scikit-learn’s tf-idf implemen-
tation(Pedregosa et al., 2011). Then we use the
trained tf-idf model to produce a tf-idf for the



Avg # of selected sentences Recall
Greedy 3.22(±0.76) 61.04%
Gold 4.34(±1.42) –
Ours 5.14(±1.65) 77.92%

Table 1: Statistics of constructed dataset.

summary. The words present in the summary are
ranked in decreasing order of tf-idf score, and top
12 words are selected as keywords. Then for each
sentence in a summary, we iteratively pick the
most similar original sentence (based on ROUGE-L
score) that covers some keywords of the summary
sentence until all keywords are covered or 3 origi-
nal sentences have been selected. This is different
from most label construction methods used in pre-
vious extract-then-abstract work. Usually, they just
select one most similar sentence from the original
document. We may select multiple sentences in
the original document to cover all keywords in the
summary sentence.

We apply this algorithm on CNN/Daily Mail
dataset to get extraction labels. Some statistics of
the labeled dataset are shown in table 1. As a result,
we see that our algorithm achieves a higher recall
on labeled 50 documents compared to the greedy
algorithm that only extracts the most similar origi-
nal sentence, while extracting 0.8 more sentences
per summary than gold labels.

3.2 Extractor

The extractor extracts salient sentences and groups
related ones together. We use hierarchical neural
models to learn sentence encoding, and exploit a
decoder network to select sentences.

3.2.1 Hierarchical Sentence Encoding
We first use BERT (Devlin et al., 2019) to encode
each original sentence following (Xiao et al., 2020)
because that encoding provides sentence-level con-
text. We take encoding of each token from BERT
and use a soft attention mechanism to combine
them into sentence encoding. We then pass each
sentence encoding to a Bi-LSTM to capture global
document information. The ourput is our final sen-
tence encoding h.

3.2.2 Sentence Selection
To extract a sequence of original sentences, we
train another LSTM network as Pointer Network
(Vinyals et al., 2015b). Specifically, at each decod-
ing step, we calculate a context vector ct following

glimpse operation (Vinyals et al., 2015a):

atj = vTg tanh(Wg1hj +Wg2zt) (1a)

αt = softmax(at) (1b)

ct =
∑
j

αt
jWg1hj (1c)

where zt is the hidden state of LSTM,
Wg1,Wg2, vg are learnable weights. We then
calculate the extraction score of each original
sentence by:

utj = vTp tanh(Wp1hj +Wp2ct) (2)

We extract original sentences according to their ex-
traction score, and we take encoding of previously
selected sentences as the input to next step LSTM.

3.2.3 Training Objective
We train the extractor using mean squared error be-
tween predicted extraction score and ground truth
extraction score. We obtain ground truth extraction
score using previously constructed dataset. Specifi-
cally, original sentences have extraction scores 2;
2, 1.5; 2, 1.5, 1 if a summary sentence maps to one,
two, or three original sentences respectively. For
all unselected sentences, they have score 0. We
distinguish scores for multiple selected sentences
because we want the most similar sentence to be
extracted more likely. At inference time, we first
extract the sentence with highest extraction score,
and we further select sentences if they have score
higher than threshold 0.3.

We also tried other training objectives such as
binary cross entropy loss and KL divergence, but
we found mean squared error converges faster.

3.3 Abstractor
For the abstractor, we use the traditional encoder-
aligned-decoder model(Bahdanau et al., 2014) with
attention mechanism(See et al., 2017). Due to the
limitation of computational resources, we tuned the
abstractor from the pre-trained weights provided
by (Chen and Bansal, 2018). For the input, if a
sentence is just extracted singly by the extractor
then the input to the encoder of the abstractor is
just the sentence. If multiple sentences are grouped
together by the extractor then the input to the en-
coder is the concatenation of them. The training
loss of the abstractor is the cross-entropy loss of the
decoder language model at each generation step.
Since one source sentence may be extracted multi-
ple times by the extractor which is then feed into



ROUGE-1 ROUGE-2 ROUGE-L
Lead-5+abstractor 45.46 19.17 41.98

Extractor+abstractor 36.14 13.74 32.02
System-greedy-selection+abstractor 46.77 25.08 45.26

System-multiple-selection+abstractor 49.82 26.30 46.84

Table 2: Final results

F1-score 0.28
% of fused summary sentences 62%

Table 3: Performance of extractor.

the abstractor to rewrite, we add a post-processing
procedure to avoid duplicate sentence output of the
abstractor. We will remove an output sentence if
it has the recall of ROUGE-L higher than 0.7 with
any its preceding output sentence.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics
We only use 1/3 of the training data of CNN/Daliy
Mail dataset due to the limitation of the computa-
tional resources. We evaluate standard ROUGE-1,2
and L on full length F1 on full test data.

4.2 Extractor Performance
We evaluate extractor on constructed dataset. The
results are shown in table 3. We notice that the per-
formance is not good. Particularly, we suffer from
the overfitting problem during training, where vali-
dation accuracy starts dropping after a few epochs
while training loss keeps decreasing. This over-
fitting exists regardless of how much dropout or
regularization we add to the model. We think the
overfitting might come from the data. Due to limi-
tation of computation resources, we only train the
extractor on 3,000 data, which is about 1% of the
total training data. Besides, our constructed dataset
is not accurate enough and still contains noise.

4.3 Final Results
The final results are shown in table 2. The base-
line, shown in the first row, is feeding the lead-5
sentences of the source article into the abstractor.
It achieved 41.98 R-L scores. As we don’t have
a strong extractor at this moment, our full model
achieved 32.02 R-L scores.

We have two additional experiments: one is
system-greedy-selection. We feed the constructed
labels by most previous work where only the

Figure 1: Sample Output

sentence with the highest ROUGE-L recall in
the source article with the corresponding refer-
ence sentence is selected. The other is system-
multiple-selection. We feed multiple selected sen-
tences which are the outputs of our label construc-
tion system to the abstractor. The results show
that multiple-selection outperforms the greedy-
selection by 1.58 rouge scores. Even We don’t have
the expected extractor performance at this moment,
we think this shows the potential of our hypothesis:
Salient sentences should be grouped together to
boost the performance in the summarization task.

A sample output is shown in figure 1. In this
example, we can see the ground truth summary
fuses two source article sentences. For greedy-
selection, it only rewrites the first source sentence
and the output is ungrammatical. For multiple-
selection, the abstractor can learn to fuse the two
sentences together. It covers the key entities like
the subject, verb and number.

5 Conclusion

In conclusion, we designed an extract-then-abstract
model where the extractor can extract and group
multiple sentences one time and the abstractor gen-
erate summaries by fusing the extracted sentences.
We don’t get a strong extractor but our results show
the potential of improving performance by extract-
ing and fusing multiple sentences. In future work,
if possible, we may expect to train the extractor
with more data and consider high-level abstraction
to remove the post-processing procedure.



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. Cite
arxiv:1409.0473Comment: Accepted at ICLR 2015
as oral presentation.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Bandit-
sum: Extractive summarization as a contextual ban-
dit. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3739–3748.

K. Hermann, Tomás Kociský, Edward Grefenstette,
Lasse Espeholt, W. Kay, Mustafa Suleyman, and
P. Blunsom. 2015. Teaching machines to read and
comprehend. In NIPS.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In Proceedings
of the 18th Annual International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, SIGIR ’95, page 68–73, New York,
NY, USA. Association for Computing Machinery.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019. Scoring sentence singletons and pairs
for abstractive summarization. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2175–2189, Florence,
Italy. Association for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. volume 242.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Eva Sharma, Luyang Huang, Zhe Hu, and Lu Wang.
2019. An entity-driven framework for abstractive
summarization. Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2015a. Order matters: Sequence to sequence for
sets. arXiv preprint arXiv:1511.06391.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015b. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, pages
2692–2700. Curran Associates, Inc.

Liqiang Xiao, Lu Wang, Hao He, and Yaohui Jin. 2020.
Copy or rewrite: Hybrid summarization with hierar-
chical reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/215206.215333
https://doi.org/10.18653/v1/P19-1209
https://doi.org/10.18653/v1/P19-1209
https://doi.org/10.18653/v1/p17-1099
https://doi.org/10.18653/v1/p17-1099
https://doi.org/10.18653/v1/d19-1323
https://doi.org/10.18653/v1/d19-1323
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

