CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

Logistics

- Reminder for late day usage: "Each student has a budget of 5 days throughout the semester before a late penalty is applied."
 - No need to inform TAs about late submission. • For assignments, we will start grading one week after the deadline. Let us know on piazza if you plan to submit later than that.
 - Grace period of one hour is given.
- NO CLASS next Tuesday (instructor out of town for academic meetings). Quiz will be on next Friday.
 - See schedule at

http://www.ccs.neu.edu/home/luwang/courses/cs6120_sp2019/cs6120_sp2 019.ntml

Brown Clusters

Brown Clusters -- Unsupervised

- Goal
 - To learn about regularities in words
 - By clustering words into groups

- Example Clusters Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays June March July April January December October November September August
- people guys folks fellows CEOs chaps doubters commies unfortunates blokes
- down backwards ashore sideways southward northward overboard aloft downwards adrift
- water gas coal liquid acid sand carbon steam shale iron
- great big vast sudden mere sheer gigantic lifelong scant colossal
- man woman boy girl lawyer doctor guy farmer teacher citizen
- American Indian European Japanese German African Catholic Israeli Italian Arab
- pressure temperature permeability density porosity stress velocity viscosity gravity tension mother wife father son husband brother daughter sister boss uncle
- machine device controller processor CPU printer spindle subsystem compiler plotter John George James Bob Robert Paul William Jim David Mike

- anyone someone anybody somebody feet miles pounds degrees inches barrels tons acres meters bytes
- director chief professor commissioner commander treasurer founder superintendent dean custodian liberal conservative parliamentary royal progressive
- visional separatist federalist PQ

Brown Clustering Algorithm

- Input: a (large) corpus of words
- Output 1: a partition of words into word clusters
- Output 2 (generalization of 1): a hierarchical word clustering

Different prefix lengths: different abstractions						
• <u>11111110110000</u>	<u>slapped</u>	• <u>11111111100110</u>	officer			
• 11111110110000	shattered	• 11111111100110	acquaintance			
• 111111110110000	commissioned	• 11111111100110	policymaker			
• 111111110110000	drafted	• 11111111100110	instructor			
• 111111110110000	authorized	• 11111111100110	investigator			
• 111111110110000	authorised	• 11111111100110	advisor			
 111111110110000 	imposed	• 11111111100110	aide			
• 111111110110000	established	• 11111111100110	expert			
• 111111110110000	developed	• 11111111100110	adviser			

• <u>111110100</u>	<u>Clinton</u>	•	<u>111111100</u>	<u>Bill</u>
• 111110100	Aleman	•	111111100	Boris
• 111110100	Zeroual	•	111111100	Warren
• 111110100	Sampras	•	111111100	Fidel
• 111110100	Barzani	•	111111100	Yasser
• 111110100	Cardoso	•	111111100	Kenneth
• 111110100	Kim	•	111111100	Viktor
• 111110100	King	•	111111100	Benjamin
• 111110100	Saddam	•	111111100	Jacques
• 111110100	Netanyahu	•	111111100	Bob
• 111110100	Dole	•	111111100	Alexander

Formulation

- V is the set of all words seen in the corpus
- Say C: V → {1, 2,...k} is a partition of the vocabulary into k classes (k ~ 1000)
- The model: $(C(w_0) \text{ is a special } <s> \text{ state})$ $p(w_1, w_2, ..., w_N) = \prod_{t=1}^N e(w_t \mid C(w_t))q(C(w_t) \mid C(w_{t-1}))$ Corpus

Formulation

- V is the set of all words seen in the corpus
- Say C: V → {1, 2,...k} is a partition of the vocabulary into k classes (k ~ 1000)
- The model: $(C(w_0) \text{ is a special } <s> \text{ state})$ $p(w_1, w_2, ..., w_n) = \prod_{t=1}^{N} e^{C(w_t \mid C(w_t))} q(C(w_t) \mid C(w_{t-1}))$ Corpus

$$\begin{split} e(i\,|\,1)=&1, e(ate\,|\,2)=e(drank\,|\,2)=0.3\\ e(guava\,|\,3)=&e(pepsi\,|\,3)=&0.1, e(and\,|\,4)=&1\\ q(1\,|\,0)=&0.2, q(2\,|\,1)=&0.4, q(3\,|\,2)=&0.3, q(4\,|\,3)=&0.1, q(2\,|\,4)=&0.2 \end{split}$$

C(I)=1, C(ate)=C(drank)=2 C(guava)=C(pepsi)=3, C(and)=4

$$\begin{split} e(i|1)=&1, e(ate|2)= e(drank|2)= 0.3\\ e(guava|3)=&(pepsi|3)=&0.1, e(and|4)=&1\\ q(1|0)=&0.2, q(2|1)=&0.4, q(3|2)=&0.3, q(4|3)=&0.1, q(2|4)=&0.2 \end{split}$$

P(I ate guava and drank pepsi) = 0.2*1*0.4*0.3*0.3*0.1*0.1*1*0.2*0.3*0.3*0.1

The Model

- Vocabulary V
- A function C: V → {1..k}
 partitioning of vocabulary into k classes
- Emission probabilities e(w|C(w))
- Transition probability q(c'|c)

A First (Naïve) Algorithm

• Cost?

- Naive = $O(|V|^5)$. Calculate everything on-the-fly!
- Improved algorithm gives $O(|V|^3)$ Store word transitions!

A First (Naïve) Algorithm

• Cost?

- Naive = O(|V|⁵). Calculate everything on-the-fly!
- Improved algorithm gives $O(|V|^3)$ Store word transitions!

Too slow!

A Second Algorithm

- Take the top m most frequent words, put each into its own cluster, c₁,c₂,...c_m
- For i = (m + 1) ... |V| – Create a new cluster, \boldsymbol{c}_{m+1} , for the i'th most frequent word. We now have m + 1 clusters
- Choose two clusters from $c_1 \, ... c_{m+1}$ to be merged:
- pick the merge that gives a maximum value for Quality(C). - We're now back to m clusters
- Carry out (m 1) final merges, to create a full hierarchy

- A Second Algorithm
- Running time: $O(|V|m^2 + n)$ where n is corpus length

