CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

Outline

Vector Semantics

- Sparse representation
 Pointwise Mutual Information (PMI)
- Dense representation
- Singular Value Decomposition (SVD)Brown Clusters
- Neural Language Model

Sparse versus dense vectors

• PPMI vectors are

- long (length |V|= 20,000 to 50,000)
- sparse (most elements are zero)

Sparse versus dense vectors

- PPMI vectors are
 - long (length |V| = 20,000 to 50,000)
 sparse (most elements are zero)
- Alternative: learn vectors which are • short (length 200-1000)
 - dense (most elements are non-zero)

Sparse versus dense vectors

• Why dense vectors?

- Short vectors may be easier to use as features in machine learning (less weights to tune)
- Dense vectors may generalize better than storing explicit counts
- They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Three methods for getting short dense vectors

- Singular Value Decomposition (SVD)
- Brown clustering
- "Neural Language Model" inspired by predictive models

Singular Value Decomposition (SVD)

Rank of a Matrix

• What is the rank of a matrix A?

What is the rank of a matrix A?Number of linearly independent columns of A

Rank of a Matrix

• What is the rank of a matrix A?

 $1 \\ 0$

• Number of linearly independent columns of A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \\ 3 & 5 \end{bmatrix}$$

• Rank is 2

• We can rewrite A as two "basis" vectors: [1 2 1] [-2 -3 1]

Intuition of Dimensionality Reduction

- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.

wx

k

SVD on Te	rm-D)ocur	nent	Matı	rix: Ex	xample
• The matrix X						
	d_1	d_2	d ₃	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

Reduce	dime	ensio	n: The	e Ma	atrix	W			
	1	2	3		4	5			
ship	-0.44	-0.30	0.57	0.5	80	.25			
boat	-0.13	-0.33	-0.59	0.0	0 0	.73			
ocean	-0.48	-0.51	-0.37	0.0	0 -0	.61			
wood	-0.70	0.35	0.15	-0.5	80	.16			
tree	-0.26	0.65	-0.41	0.5	8 -0	.09			
				1	2	3	4	5	
			ship –	0.44	-0.30	0.00	0.00	0.00	
			boat –	0.13	-0.33	0.00	0.00	0.00	
			ocean -	0.48	-0.51	0.00	0.00	0.00	
			wood –	0.70	0.35	0.00	0.00	0.00	
			tree –	0.26	0.65	0.00	0.00	0.00	

1	2	2	4	Б					
1	2	3	4 00	0.00					
2.10	0.00	0.00	0.00	0.00					
0.00	1.59	0.00	0.00	0.00					
0.00	0.00	1.28	0.00	0.00					
0.00	0.00	0.00	1.00	0.00					
0.00	0.00	0.00	0.00	0.39					
					1	2	3	4	5
					2.16	0.00	0.00	0.00	0.00
					0.00	1.59	0.00	0.00	0.00
					0.00	0.00	0.00	0.00	0.00
				1	0.00	0.00	0.00	0.00	0.00
					0.00	0.00	0.00	0.00	0.00

	<i>d</i> ₁	<i>d</i> ₂	<i>d</i> ₃	d4	<i>d</i> ₅	<i>d</i> ₆		1	2	3	4	5
snip	1	U	1	U	U	U	ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0	boat	-0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0	ocean	-0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0	wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1	tree	-0.26	0.65	0.00	0.00	0.00

More details

- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF) • Local weight: term frequency (or log version)

Global weight: idf

Let's return to PPMI word-word matrices

• Can we apply to SVD to them?

Embeddings versus sparse vectors

• Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity

- Denoising: low-order dimensions may represent unimportant information
- Truncation may help the models generalize better to unseen data.
- Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
- Dense models may do better at capturing higher order cooccurrence.