#### CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

#### Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
  - Learning an HMM
  - Prediction with an learned HMM (inference)

#### Parts of Speech

- Perhaps starting with Aristotle in the West (384-322 BCE), there was the idea of having parts of speech (POS)
- a.k.a lexical categories, word classes, "tags"
- · Lowest level of syntactic analysis

#### English Parts of Speech (POS) Tagsets

- Original Brown corpus used a large set of 87 POS tags.
- Most common in NLP today is the Penn Treebank set of 45 tags.
  - Tagset used in the slides.
  - Reduced from the Brown set for use in the context of a parsed corpus (i.e. Penn Treebank).

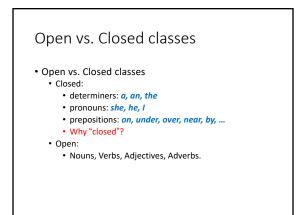
#### **English Parts of Speech**

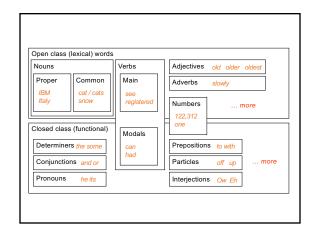
- Noun (person, place or thing)
  - Singular (NN): dog, fork
  - · Plural (NNS): dogs, forks
  - Proper (NNP, NNPS): John, Springfields • Personal pronoun (PRP): I, you, he, she, it
  - Wh-pronoun (WP): who, what
- Verb (actions and processes)
  - Base, infinitive (VB): eat
  - Past tense (VBD): ate
  - · Gerund (VBG): eating Past participle (VBN): eaten
  - Non 3<sup>rd</sup> person singular present tense (VBP): eat
  - 3rd person singular present tense: (VBZ): eats
  - Modal (MD): should, can
    To (TO): to (to eat)

# English Parts of Speech (cont.)

- Adjective (modify nouns)
   Basic (JJ): red, tall
   Comparative (JJR): redder, taller
  - · Superlative (JJS): reddest, tallest

- Adverb (modify verbs)
   Basic (RB): quickly
   Comparative (RBR): quicker
   Superlative (RBS): quickest
- Preposition (IN): on, in, by, to, with
- Determiner:
  Basic (DT) a, an, the
  WH-determiner (WDT): which, that
- · Coordinating Conjunction (CC): and, but, or,
- Particle (RP): off (took off), up (put up)



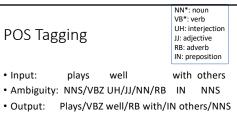


# Ambiguity in POS Tagging

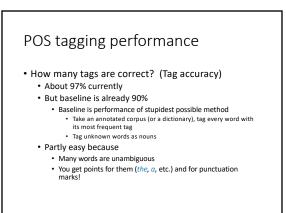
- "Like" can be a verb or a preposition
  I like/VBP candy.
  - Time flies like/IN an arrow.
- "Around" can be a preposition, particle, or adverb
- I bought it at the shop around/IN the corner.
- I never got around/RP to getting a car.
- A new Prius costs around/RB \$25K.

## POS Tagging

• The POS tagging problem is to determine the POS tag for a particular instance of a word.



- Uses:
  - Text-to-speech (how do we pronounce "lead"?)
  - Can write regexps over the output for phrase extraction
     Noun phrase: (Det) Adj\* N+
  - As input to or to speed up a full parser



# How difficult is POS tagging?

- Word types: roughly speaking, unique words
- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
  - I know *that* he is honest = IN (preposition)
  - Yes, *that* play was nice = DT (determiner)
  - You can't go that far = RB (adverb)
- 40% of the word tokens are ambiguous

#### Sources of information

- What are the main sources of information for POS tagging? "Bill saw that man yesterday"
  - Contextual: Knowledge of neighboring words
    - Bill saw that man yesterday
       NNP NN DT NN NN
    - VB VB(D) IN VB NN
  - Local: Knowledge of word probabilities
  - man is rarely used as a verb....
- The latter proves the most useful, but the former also helps
- Sometimes these preferences are in conflict: • The trash can is in the garage

#### More and Better Features → Feature-based tagger

 Can do surprisingly well just looking at a word by itself:

- Word the: the  $\rightarrow$  DT
- Lowercased word Importantly: importantly  $\rightarrow$  RB
- Prefixes unfathomable:  $un \rightarrow JJ$
- Suffixes Importantly:  $-ly \rightarrow RB$
- Capitalization Meridian: CAP  $\rightarrow$  NNP
- Word shapes 35-year:  $d-x \rightarrow JJ$

#### POS Tagging Approaches

- Rule-Based: Human crafted rules based on lexical and other linguistic knowledge.
- Learning-Based: Trained on human annotated corpora like the Penn Treebank.
  - Statistical models: Hidden Markov Model (HMM) this lecture!, Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF)
  - Rule learning: Transformation Based Learning (TBL)
     Neural networks: Recurrent networks like Long Short Term Memory (LSTMs)
- Generally, learning-based approaches have been found to be more effective overall, taking into account the total amount of human expertise and effort involved.

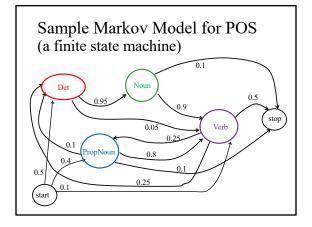
#### Outline

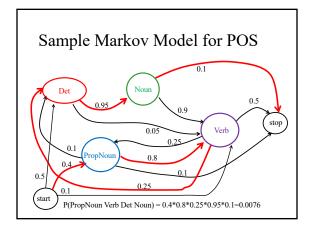
- What is part-of-speech (POS) and POS tagging?
- → Hidden Markov Model (HMM) for POS tagging
  - Learning an HMM
  - Prediction with an learned HMM (inference)

# Hidden Markov Model

# Markov Model / Markov Chain

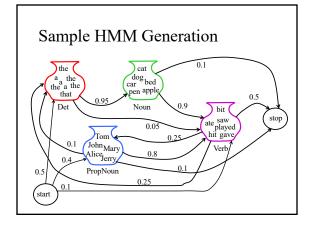
- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

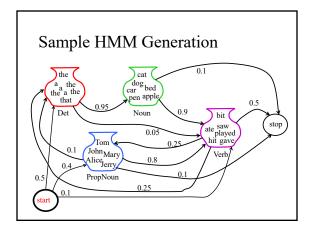


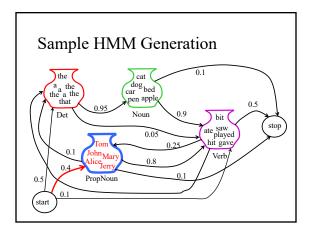


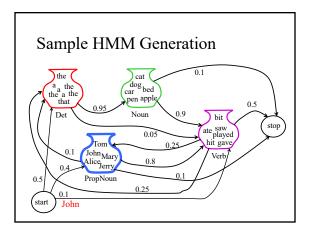
## Hidden Markov Model

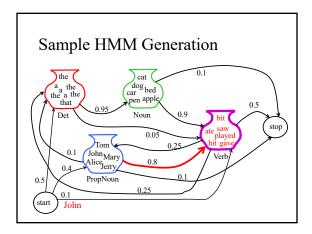
- Probabilistic generative model for sequences.
- Assume an underlying set of *hidden* (unobserved) states in which the model can be (e.g. part-of-speech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a *probabilistic* generation of tokens from states (e.g. words generated for each POS).

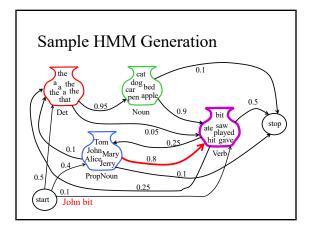


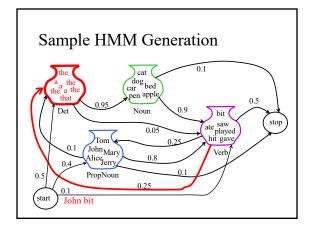


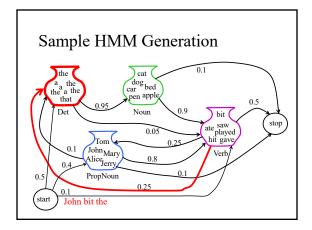


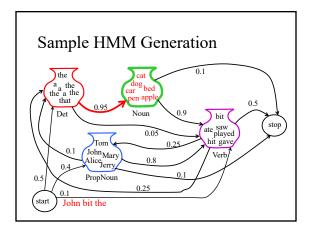


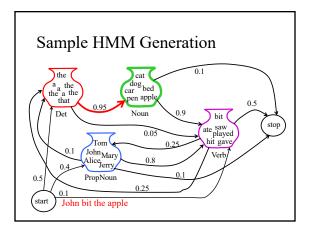


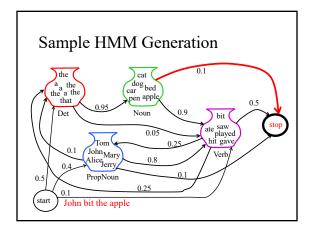








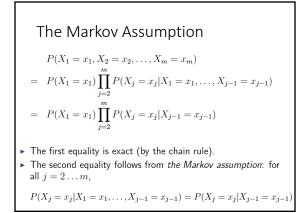


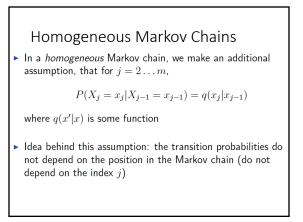




- Consider a sequence of random variables  $X_1, X_2, \ldots, X_m$  where m is the length of the sequence
- Each variable  $X_i$  can take any value in  $\{1, 2, \dots, k\}$
- ► How do we model the joint distribution

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$





#### Homogeneous Markov Chains

▶ In a homogeneous Markov chain, we make an additional assumption, that for  $j = 2 \dots m$ ,

$$P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1})$$

where q(x'|x) is some function

 Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)

"the Markov Chains follows the Markov assumption"

Markov Models  
• Our model is then as follows:  

$$p(x_1, x_2, \dots x_m; \underline{\theta}) = q(x_1) \prod_{j=2}^m q(x_j | x_{j-1})$$
• Parameters in the model:  
•  $q(x)$  for  $x = \{1, 2, \dots, k\}$   
Constraints:  $q(x) \ge 0$  and  $\sum_{x=1}^k q(x) = 1$   
•  $q(x' | x)$  for  $x = \{1, 2, \dots, k\}$  and  $x' = \{1, 2, \dots, k\}$   
Constraints:  $q(x' | x) \ge 0$  and  $\sum_{x'=1}^k q(x' | x) = 1$ 

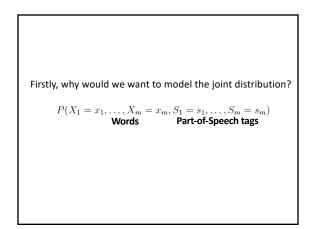
# Probabilistic Models for Sequence Pairs – words and POS tags

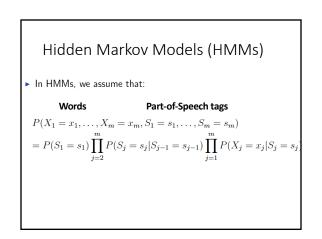
- We have two sequences of random variables:  $X_1, X_2, \ldots, X_m$  and  $S_1, S_2, \ldots, S_m$
- ▶ Intuitively, each X<sub>i</sub> corresponds to an "observation" and each S<sub>i</sub> corresponds to an underlying "state" that generated the observation. Assume that each S<sub>i</sub> is in {1, 2, ... k}, and each X<sub>i</sub> is in {1, 2, ... o}
- How do we model the joint distribution

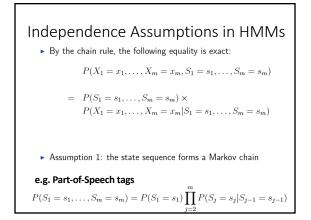
$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

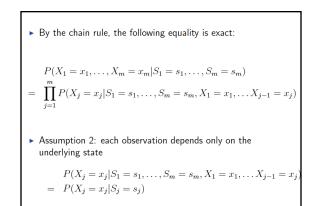
# Probabilistic Models for Sequence Pairs – words and POS tags

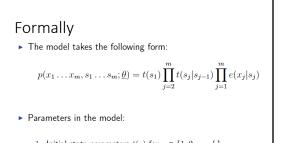
- We have two sequences of random variables:
   X<sub>1</sub>, X<sub>2</sub>,..., X<sub>m</sub> and S<sub>1</sub>, S<sub>2</sub>,..., S<sub>m</sub>
   Words Part-of-Speech tags
- Intuitively, each X<sub>i</sub> corresponds to an "observation" and each S<sub>i</sub> corresponds to an underlying "state" that generated the observation. Assume that each S<sub>i</sub> is in {1, 2, ... k}, and each X<sub>i</sub> is in {1, 2, ... o}
- How do we model the joint distribution
  - $P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$











1. Initial state parameters t(s) for  $s \in \{1,2,\ldots,k\}$ 

- 2. Transition parameters t(s'|s) for  $s,s' \in \{1,2,\ldots,k\}$
- 3. Emission parameters e(x|s) for  $s \in \{1,2,\ldots,k\}$  and  $x \in \{1,2,\ldots,o\}$



- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
- 🔿 Learning an HMM
  - Prediction with an learned HMM (inference)

#### HMM

- Parameter estimation
  - Learning the probabilities from training data
  - P(verb|noun)?, P(apples|noun)?
- Inference: Viterbi algorithm (dynamic programming)
  - Given a new sentence, what are the POS tags for the words?

#### HMM

- Parameter estimation
- Inference: Viterbi algorithm (dynamic programming)

# Parameter Estimation with Fully Observed Data

• We'll now discuss parameter estimates in the case of *fully* observed data: for i = 1 ... n, we have pairs of sequences  $x_{i,j}$  for j = 1 ... m and  $s_{i,j}$  for j = 1 ... m. (i.e., we have n training examples, each of length m.)

# Parameter Estimation: Transition Parameters

• P(verb|noun)?

- $\blacktriangleright$  Assume we have fully observed data: for  $i=1\ldots n,$  we have pairs of sequences  $x_{i,j}$  for  $j=1\ldots m$  and  $s_{i,j}$  for  $j=1\ldots m$
- $\blacktriangleright$  Define count( $i,s \to s')$  to be the number of times state s' follows state s in the i'th training example. More formally:

$$\operatorname{count}(i, s \to s') = \sum_{i=1}^{m-1} [[s_{i,j} = s \land s_{i,j+1} = s']]$$

(We define  $[[\pi]]$  to be 1 if  $\pi$  is true, 0 otherwise.)

► The maximum-likelihood estimates of transition probabilities are then  $t(s'|s) = \frac{\sum_{i=1}^{n} \text{count}(i, s \to s')}{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1$ 

$$|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \to r)}{\sum_{i=1}^{n} \sum_{s'} \operatorname{count}(i, s \to s')}$$

# Parameter Estimation: Emission Parameters

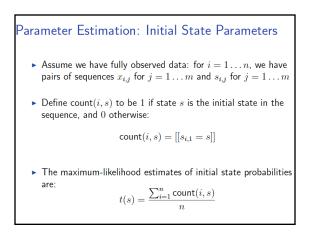
• P(apples|noun)?

- ▶ Assume we have fully observed data: for i = 1...n, we have pairs of sequences  $x_{i,j}$  for j = 1...m and  $s_{i,j}$  for j = 1...m
- ▶ Define count(i, s → x) to be the number of times state s is paired with emission x. More formally:

$$\mathsf{count}(i, s \rightsquigarrow x) = \sum_{j=1}^{m} [[s_{i,j} = s \land x_{i,j} = x]]$$

The maximum-likelihood estimates of emission probabilities are then  $\sum_{i=1}^{n} \operatorname{count}(i, a, x) = 0$ 

$$e(x|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \rightsquigarrow x)}{\sum_{i=1}^{n} \sum_{x} \operatorname{count}(i, s \rightsquigarrow x)}$$



#### Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
- Learning an HMM
- Prediction with an learned HMM (inference)

#### HMM

- Parameter estimation
- Inference: Viterbi algorithm (dynamic programming)

#### The Viterbi Algorithm

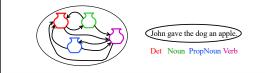
• Goal: for a given input sequence  $x_1, \ldots, x_m$ , find

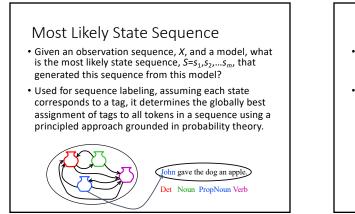
 $\arg\max_{\substack{s_1,\ldots,s_m}} p(x_1\ldots x_m, s_1\ldots s_m; \underline{\theta})$ 

 $\blacktriangleright$  This is the most likely state sequence  $s_1 \dots s_m$  for the given input sequence  $x_1 \dots x_m$ 

#### Most Likely State Sequence

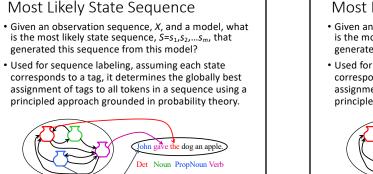
- Given an observation sequence, X, and a model, what is the most likely state sequence,  $S=s_1,s_2,...s_m$ , that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.





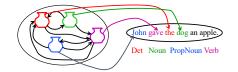
# Most Likely State Sequence Given an observation sequence, X, and a model, what is the most likely state sequence, S=s1,S2,...Sm, that generated this sequence from this model? Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.





#### Most Likely State Sequence

- Given an observation sequence, X, and a model, what is the most likely state sequence, S=s<sub>1</sub>,s<sub>2</sub>,...s<sub>m</sub>, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



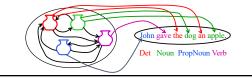
# Most Likely State Sequence

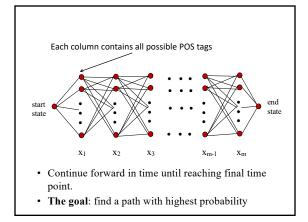
- Given an observation sequence, X, and a model, what is the most likely state sequence, S=s<sub>1</sub>,s<sub>2</sub>,...s<sub>m</sub>, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



#### Most Likely State Sequence

- Given an observation sequence, X, and a model, what is the most likely state sequence, S=s<sub>1</sub>,s<sub>2</sub>,...s<sub>m</sub>, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.





#### The Viterbi Algorithm

• Goal: for a given input sequence  $x_1, \ldots, x_m$ , find

 $\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m, s_1\ldots s_m; \underline{\theta})$ 

 The Viterbi algorithm is a dynamic programming algorithm. Basic data structure:

 $\pi[j,s]$ 

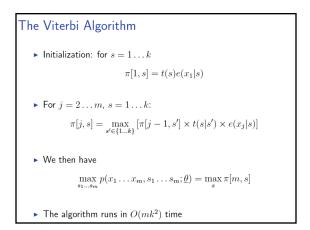
will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally:  $\pi[1,s]=t(s)e(x_1|s)$ , and for j>1,

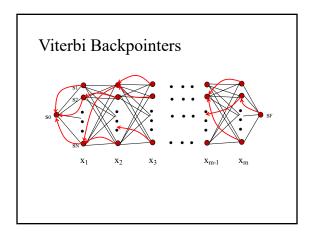
#### The Viterbi Algorithm

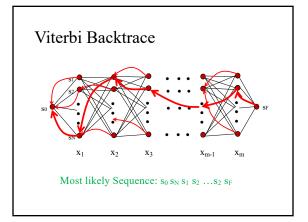
▶ Goal: for a given input sequence  $x_1, \ldots, x_m$ , find

 $\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m, s_1\ldots s_m; \underline{\theta})$ 

will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally:  $\pi[1,s]=t(s)e(x_1|s)$ , and for j>1,







The Viterbi Algorithm: Backpointers  
• Initialization: for 
$$s = 1 \dots k$$
  
 $\pi[1, s] = t(s)e(x_1|s)$   
• For  $j = 2 \dots m$ ,  $s = 1 \dots k$ :  
 $\pi[j, s] = \max_{s' \in \{1\dots k\}} [\pi[j - 1, s'] \times t(s|s') \times e(x_j|s)]$   
and  
 $bp[j, s] = \arg \max_{s' \in \{1\dots k\}} [\pi[j - 1, s'] \times t(s|s') \times e(x_j|s)]$   
• The  $bp$  entries are backpointers that will allow us to recover  
the identity of the highest probability state sequence

• Highest probability for any sequence of states is  $\max_{s} \pi[m, s]$ • To recover identity of highest-probability sequence:  $s_m = \arg\max_{s} \pi[m, s]$ and for  $j = m \dots 2$ ,  $s_{j-1} = bp[j, s_j]$ • The sequence of states  $s_1 \dots s_m$  is then  $\arg\max_{s_1,\dots,s_m} p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta})$ 

## Homework

- Reading J&M Ch5.1-5.5, Ch6.1-6.5
- For 3<sup>rd</sup> Edition:
- https://web.stanford.edu/~jurafsky/slp3/8.pdf
- HMM notes

   <u>http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf</u>
- Start thinking about course project and find a team.