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CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Logistics
* Project proposal is due on Feb 6.

« If you haven’t found a group yet, make a private post on piazza today
and let me know.

 Assignment 2 is released, due on March 20th, 11:59pm.

Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.

* Fed raises interest rates

Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.
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* Phrase structure organizes words into nested constituents.
* How do we know what is a constituent? (Not that linguists don’t

argue about some cases.)
« Distribution: a constituent behaves as a unit that can appear in different

places:
+ John talked [to the children] [about drugs].
+ John talked [about drugs] [to the children].
* *John talked drugs to the children about
* Substitution/expansion/pronoun:
« | sat [on the box/right on top of the box/there].
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* Plus minor phrase types:

* QP (quantifier phrase in NP), CONJP (multi word constructions: as well as), INTJ
(interjections), etc.

Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or are
arguments of) which other words.

The boy put the tortoise on the rug

Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or are
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Phrase Chunking

* Find all non-recursive noun phrases (NPs) and verb phrases (VPs) in a
sentence.
* [NP 1] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].

* [NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to
][NP only 1.8 billion ] [PP in ] [NP September ]

Phrase Chunking as Sequence Labeling

* Tag individual words with one of 3 tags
* B (Begin) word starts new target phrase
* | (Inside) word is part of target phrase but not the first word
* O (Other) word is not part of target phrase
« Sample for NP chunking
* He reckons the current account deficit will narrow to only 1.8

billion in September.

Begin Inside Other

Evaluating Chunking

Per token accuracy does not evaluate finding correct full chunks.
Instead use:

Number of correct chunks found

Precision =
Total number of chunks found

Number of correct chunks found
Recall =

Total number of actual chunks

F measure: E:;: 2PR
Ailyp PR
P R




Current Chunking Results

* Best system for NP chunking: F1=96%

« Typical results for finding range of chunk types (CONLL 2000 shared
task: NP, VP, PP, ADV, SBAR, ADJP) is F1=92-94%

Syntactic Parsing

* Produce the correct syntactic parse tree for a sentence
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Classical NLP Parsing:
The problem and its solution

* Adding constraints to grammars to limit unlikely/weird parses for
sentences

« But the attempt make the grammars not robust
parse.

* In traditional systems, commonly 30% of sentences in even an edited text would have no

« A less constrained grammar can parse more sentences
between them

a sentence

« But simple sentences end up with ever more parses with no way to choose
* We need mechanisms that allow us to find the most likely parse(s) for

« Statistical parsing lets us work with very loose grammars that admit millions of
parses for sentences but still quickly find the best parse(s)

(0]

The rise of annotated data
The Penn Treebank
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The rise of annotated data

« Starting off, building a treebank seems a lot slower and less useful
than building a grammar

 But a treebank gives us many things
* Reusability of the labor
* Many parsers, POS taggers, etc.

* Valuable resource for linguistics
* Broad coverage

* Frequencies and distributional information
* A way to evaluate systems

Two problems to solve for parsing
1. Repeated work

“Cats scratch people with cats with claws
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Two problems to solve for parsing:
1. Repeated work...

“Cats scratch people with cats with claws”

people | with

Two problems to solve for parsing:
2. Choosing the correct parse

* How do we work out the correct attachment:

* She saw the man with a telescope

* Words are good predictors of attachment, even absent full
understanding

* Moscow sent more than 100,000 soldiers into Afghanistan ...

 Sydney Water breached an agreement with NSW Health ...

« Our statistical parsers will try to exploit such statistics.

Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP applications:

* High precision question answering [Pasca and Harabagiu SIGIR 2001]

* Improving biological named entity finding [Finkel et al. INLPBA 2004]
* Syntactically based sentence compression [Lin and Wilbur 2007]

« Extracting opinions about products [Bloom et al. NAACL 2007]

* Improved interaction in computer games [Gorniak and Roy 2005]

* Helping linguists find data [Resnik et al. BLS 2005]

* Source sentence analysis for machine translation [xu et al. 2009]
« Relation extraction systems [Fundel et al. Bioinformatics 2006]

(Probabilistic) Context-Free Grammars

- CFG
« PCFG

Phrase structure grammars
= context-free grammars (CFGs)

*G=(T,N,S,R)
* Tis a set of terminal symbols
* Nis a set of nonterminal symbols
* Sis the start symbol (S € N)
* Ris a set of rules/productions of the form X —y
* XENandyE(NUT)*

A phrase structure grammar

S— NP VP N — people
VP —V NP ish
VP — V NP PP N = fis
NP —> NP NP N — tanks
NP — NP PP N — rods
NP —>N
NP e V — people
PP —> P NP V> fish

V — tanks
people fish tanks P - with

people fish with rods
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Phrase structure grammars
= context-free grammars (CFGs)
*G=(T,N,S,R)

* Tis a set of terminal symbols

* Nis a set of nonterminal symbols

* Sis the start symbol (S € N)

* Ris a set of rules/productions of the form X — y
« XENandy€e (NUT)*

* A grammar G generates a language L.

Sentence Generation

 Sentences are generated by recursively rewriting the start symbol
using the productions until only terminals symbols remain.

7

vP
Verb P

book Det  Nominal

the Nominal

Noun PTep NP
flight through Proper-Noun
Houston
Phrase structure grammars in NLP A phrase structure grammar
*G=(TCN,S,LR)
* Tis a set of terminal symbols S—>NPVP N — people
« Cis a set of preterminal symbols VP —> VNP -
N — fish
« N is a set of nonterminal symbols VP — VNP PP
« Sis the start symbol (S € N) NP — NP NP N — tanks
« Lis the lexicon, a set of items of the form X — x NP — NP PP N — rods
* XECandx€T NP >N
* Ris the grammar, a set of items of the form X — y NP s e V — people
* XENandy€E(NUC* PP —> P NP V — fish
* By usual convention, S is the start symbol, but in statistical NLP, V = tank
we usually have an extra node at the top (ROOT, TOP) people fish tanks - a‘n S
* We usually write e for an empty sequence, rather than nothing people fish with rods P — with
Probabilistic — or stochastic — context-free
A PCFG
grammars (PCFGs)
S— NP VP 1.0 N — people 0.5
*G=(TN,S,RP) VP — V NP 0.6 N — fish 0.2
* Tis a set of terminal symbols
* N is a set of nonterminal symbols VP — VNP PP 0.4 N — tanks 0.2
* Sis the start symbol (S € N) NP — NP NP 0.1 N — rods 0.1
* Ris aset of rules/productions of the form X — y NP — NP PP 0.2 V — people 0.1
* P is a probability function ,
PR [01] NP — N 0.7 V — fish 0.6
*VXEN, YP(X—=p)=1 PP — P NP 1.0 V — tanks 0.3
o P — with 1.0

* A grammar G generates a language model L.
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The probability of trees and strings t: S1.0 o 510
. . NP—/\\/P NPO] VPO.G
« P(t) - The probability of a tree t is the product of the 0.7 0.4 |
probabilities of the rules used to generate it. | Nos Voo N
+ P(s) - The probability of the string s is the sum of the Nos  Vos NPoz PP1o | ’ | ’ :
probabilities of the trees which have that string as their | | | AN people fish  Nbas  PPio
yield people fish Noo» Pig NPy7 |
) \ N Pio NP
P(s) = 2t P(s, t) where tis a parse of s tanks  with ILO_l \0'2 10 | 0.7
=2 P() | tanks with  No 1
rods |
rods
Tree and String Probabilities Chomsky Normal Form
= people fish tanks with rods
«P(t;) =1.0% 0.7 X 0.4 X 0.5 0.6 x 0.7  Verb attach * All rules are of the formX > YZorX > w
X 1.0 X 0.2 X 1.0 X 0.7 X 0.1 *X,Y,ZENandweT
= 0.0008232 * A transformation to this form doesn’t change the generative capacity
+P(t) =1.0X0.7X0.6X0.5X0.6X0.2  Noun attach of a CFG
X 0.7 X 1.0 X 0.2 X 1.0 X 0.7 X 0.1 « That is, it recognizes the same language
=0.00024696 u S1o B /‘“\ * But maybe with different trees
*P(s) = P(t) + P(t2) T TR * Empties and unaries are removed recursively
=0.0008232 + 0.00024696 Nas Veo Nror Fero o « n-ary rules are divided by introduci terminals (n > 2)
= | | VAN people fish NPor  PPro Yy Y Introducing new nonterminals (n
=0.00107016 people fsh Noz Fro N |
ks win o

A phrase structure grammar Chomsky Normal Form steps

S— NP VP N — people za)cn;vp N — people

VP — V NP N — fish VP >V NP N — fish
VPV

VP — V NP PP N — tanks VP>V NP PP N — tanks

NP — NP NP N — rods VP>V PP N — rods
NP —> NP NP

NP — NP PP V — people NP —> NP V — people

NP —> N V — fish NP —> NP PP V — fish

NP —e V — tanks :E:;P V — tanks

PP — P NP P — with PP—>PNP P — with
PP—P
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Chomsky Normal Form steps

S NP VP
VP> VNP
SN
VPV

Ve VNP PP
S VNP PR
Ve vep
S Vep
NP NP NP
NP - NP
NP > NP PP
NP PP
NP N
PP > P NP
PP P

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form steps

soNpve N —> people
Ve Ve y

N - fish

Ve v N — tanks
VP VNP PP N = rods

s vNpeR

Ve vep V — people
s vep S — people
NP> NP NP y
" v fish
NP> NP PP S — fish

NP ee V — tanks
NP N

Pp P NP S — tanks
23 P — with

Chomsky Normal Form steps

S NPVP
VP>V NP
S VNP
VP>V NP PP
S—>VNPPP
VP> VPP
S VPP
NP —> NP NP
NP —> NP
NP - NP PP
NP - PP
NP> N

PP P NP
PP P

> people
> fish

> tanks
> rods

> people
> people

w<zzzz2

VP > people
V> fish

S - fish

VP > fish

V > tanks
S > tanks
VP - tanks
P > with

Chomsky Normal Form steps

S NP VP NP > people
NP > fish
VP > VNP
NP > tanks
S VNP NP —> rods
VP —> VNP PP V - people
S > VNP PP S —> people
VP > people
VP > VPP Vs fish
s> VPP S fish
NP —> NP NP VP> fish
V- tanks
NP —> NP PP e tanks
NP > P NP VP > tarks
PP P NP P> with
PP > with

Chomsky Normal Form steps

s> NP VP
VP> VNP

S VNP

VP>V @VP_V
@VP_V > NP PP
sHV@sV
@S_V > NP PP
VP>V PP
s>veP

NP —> NP NP
NP > NP PP
NP> P NP

PP > P NP

NP> people
NP> fish
NP > tanks
NP> rods
V- people
S people
VP people
V> fish

S fish
VP> fish
V> tanks
S tanks
VP> tanks
P> with
PP > with

Chomsky Normal Form
* You should think of this as a transformation for efficient parsing

* Binarization is crucial for cubic time CFG parsing

* The rest isn’t necessary; it just makes the algorithms cleaner and a bit
quicker
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An example: before binarization...

Before and After binarization on VP

RooT ROOT
‘ ROOT
s S
/\ S
VP
NP /\ o ve
/N NP vP
M v NP PP ' /N /Eiv
\ 5 e N v NP PP A
N ‘ ! — N v NP PP
N P NP

| N | /\

people  fish tanks  with  rods N N p NP

|

people fish tanks  with rods N

|

people fish  tanks  with rods
Parsing Parsing Example
* Given a string of terminals (e.g. sentences) and a CFG, determine if S
the string can be generated by the CFG. |
* Also return a parse tree for the string ve
Verb NP

+ Also return all possible parse trees for the string

* Must search space of derivations for one that derives the given string.

* Top-Down Parsing: Start searching space of derivations for the start symbol.
* Bottom-up Parsing: Start search space of reverse derivations from the
terminal symbols in the string.

book that flight -

book Det Nominal

that  Noun

flight

Top Down Parsing

S

NP VP

Pronoun

Top Down Parsing

NP VP

|

Pronoun

book
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Top Down Parsing

S

Top Down Parsing

S

NP VP NP VP
ProperNoun ProperNoun
book
Top Down Parsing Top Down Parsing
N S
NP/\VP NP VP

Det  Nominal

Det  Nominal

book

Top Down Parsing

Aux NP VP

Top Down Parsing

Aux NP VP

book




2/4/19

Top Down Parsing

Top Down Parsing

VP

Verb

Top Down Parsing

Top Down Parsing

S

[

VP

Verb

l

book  that

Top Down Parsing

S

[

VP

Verb NP

Top Down Parsing

Verb NP

book

10
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Top Down Parsing

S

[

VP

Verb NP

book  Pronoun

Top Down Parsing

S

[
VP
Ve‘rh NP

book  Pronoun

that

Top Down Parsing

S

[

VP

Veé\?
[\

book  ProperNoun

Top Down Parsing

S

[

VP

Verb NP

book  ProperNoun

that

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

that

11



2/4/19

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

Top Down Parsing

S

[

VP

Ve‘rh NP

book Det Nominal

that  Noun that  Noun
flight
Bottom Up Parsing Bottom Up Parsing
Noun
book that flight bﬂlﬂk that flight
Bottom Up Parsing Bottom Up Parsing
Nominal
Nominal Nominal Noun
Noun Nn'un
bm‘)k that flight bo(‘)k that flight

12
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Bottom Up Parsing

Nominal

Nominal ~ Noun

Noun

book that flight

Bottom Up Parsing

Nominal

Nominal PP

Noun

book that flight

Bottom Up Parsing

Nominal
Nominal Pl
Noun Det
bmlk tl‘lat flight

Bottom Up Parsing

Nominal

Nominal P!
NP

Noun Dmninal

| |

book that flight

Bottom Up Parsing

Nominal
Nominal Pl
NP
Noun Dét Nominal
bo(lk that Noun

flight

Bottom Up Parsing

Nominal

Nominal PP

NP
Noun Det Nominal
book that Noun
flight

13
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Bottom Up Parsing

Bottom Up Parsing

Nominal Nominal
Nominal P /S\ Nominal PP /S\
NP VP NP VP
Noun Dmninal Noun Det Nominal *
bm!k that No’un book ﬂ'wt Noun
flight flight
Bottom Up Parsing Bottom Up Parsing
Nominal
Nominal P’
JNe NP
Noun  per Nominal Verb D Nominal
bmlk tl‘lat No’un bo«Lk tl’lat No’u,.
ﬂiglht flight
Bottom Up Parsing Bottom Up Parsing
S
!
vp P
\ N \ e
Verb Dmninal Verb Dmninal
bol)k that No’un bo(l)k tl‘lat Noun
flight flight

14
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Bottom Up Parsing

© NP

f
rx
Velrh Dminal

[

book that Noun

flight

Bottom Up Parsing

VP

N

P PP
NP

Velrb Det Nominal
book that Noun
flight

Bottom Up Parsing

VP

N

vip PR
X Ne
Verb Dmmal

book tl‘lat NJ“..

ﬂiglht

Bottom Up Parsing

VP
’\ NP
NP
Verb e Nominal
bolnk tl’lat ]\‘0’““

flight

Bottom Up Parsing

vP

F\NP

Verb pe Nowinal

| | |

book that Noun

flight

Bottom Up Parsing

S

I

VP

[\ NP
/\
Verb Det Nominal

l |

book that Noun

flight
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Top Down vs. Bottom Up

* Top down never explores options that will not lead to a full parse, but
can explore many options that never connect to the actual sentence.

* Bottom up never explores options that do not connect to the actual
sentence but can explore options that can never lead to a full parse.

* Relative amounts of wasted search depend on how much the
grammar branches in each direction.

Two problems to solve for parsing:
1. Repeated work

“Cats scratch people with cats with claws”

scratch

people | with

Dynamic Programming Parsing

« To avoid extensive repeated work, must cache intermediate results,
i.e. completed phrases.

* Caching (memorizing) is critical to obtaining a polynomial time
parsing (recognition) algorithm for CFGs.

(Probabilistic) CKY Parsing

Constituency Parsing

Input: a PCFG, and a sentence PCFG

Rule Prob 6;
S— NP VP 8o
NP — NP NP [

N — fish Ba2

N — people Ba3
V — fish Baa

fish people fish tanks

Constituency Parsing

Output: a parsing tree PCFG
Rule Prob 6;
s S—>NPVP 6o
/\ NP>NPNP 61
VP

/NP\ ﬁ“lp N — fish 6x2

M N v N N — people Ba3

| | | | V - fish B

fish people fish tanks

16
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Cocke-Kasami-Younger (CKY)
Constituency Parsing

fish people fish tanks fish people fish tanks

Viterbi (Max) Scores

S— NP VP 0.9
S—>VP 0.1
VP — VNP 0.5
VP>V 0.1
VP —>V@VP_V 03
VP — VPP 0.1

@VP_V —>NPPP 1.0
NP—>NPNP 0.1
NP—>NPPP 0.2
NP >N 07
PP —PNP 10

people fish

Extended CKY parsing

* Unaries can be incorporated into the algorithm
* Messy, but doesn’t increase algorithmic complexity
* Empties can be incorporated
* Doesn’t increase complexity; essentially like unaries
* Binarization is vital

« Without binarization, you don’t get parsing cubic in the length of the sentence
and in the number of nonterminals in the grammar

The CKY algorithm (1960/1965)
... extended to unaries

function CKY(words, grammar) returns [most_probable_parse,prob]
score = new double[#(words)+1] [#(words)+1] [#(nonterms)]
back = new Pair[#(words)+1] [#(words)+1] [#nonterms]]
for 1=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[11[i+1][A] = P(A -> words[i])
/handle unaries
oolean added - true
while added
added - false
for A, B in nonterms
if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B)*score[1] [i+1] [B]
if prob > score[i][i+1][A]
score[1][i+1][A] = prob
back[i][i+11[A] = B
added = true

The CKY algorithm (1960/1965)
... extended to unaries

for span = 2 to #(words)
for begin = 0 to #(words)- span
end - begin + span
for split = begin+l to end-1
for A,B,C in nonterms
prob=score[begin] [sp1it] [B]*score[split] [end] [C]*P(A->BC)
if prob > score[begin] [end] [A]
score[beginlend] [A] = prob_ )
back[begin] [end] [A] = new Triple(split,B,C)
//handle unaries
boolean added = true
while added
added - false
For A, B in nonterms
prob = P(A->B)*score[begin] [end] [B];
if prob > score[begin] [end] [A]
score[begin] [end] [A] = prob
back[begin] [end] [A] = 8
added = true

return buildTree(score, back)
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