1/28/19

CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Outline

* Maximum Entropy
* Feedforward Neural Networks
* Recurrent Neural Networks

Introduction

* So far we’ve looked at “joint (or generative) models”
* Language models, Naive Bayes, HMM
* But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, IR (and ML generally)
* Because:
* They give high accuracy performance
* They make it easy to incorporate lots of linguistically important features

Joint vs. Conditional Models

* We have some data {(d, c)} of paired observations d and hidden
classes c.
place probabilities over both observed data
and the hidden stuff (generate the observed data from hidden stuff):

p(c|d)=p(c,d)/p(d)

* All the classic statistic NLP models:
* n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free
grammars, IBM machine translation alignment models

Joint vs. Conditional Models

* Discriminative (conditional) models take the data as given, and put a
probability over hidden structure given the data:

P(cld)
* Logistic regression/maximum entropy models (this lecture), conditional random fields

* Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly
probabilistic)

Conditional vs. Joint Likelihood

<A model gives probabilities P(d,c) and tries to maximize this joint
likelihood.
« It turns out to be trivial to choose weights: just relative frequencies.
* A conditional model gives probabilities P(c|d). It takes the data as
given and models only the conditional probability of the class.
* We seek to maximize conditional likelihood.
* More closely related to classification error.

http://www.ccs.neu.edu/home/luwang

1/28/19

Maximum Entropy (MaxEnt)

* Or logistic regression

Features

* In these slides and most MaxEnt work: features (or feature
functions) fare elementary pieces of evidence that link
aspects of what we observe d with a category c that we want
to predict

* A feature is a function with a bounded real value: f: C x D —
R

Example Task: Named Entity Type

LOCATION LOCATION
in Arcadia in Québec taking Zantac saw Sue

Example features

* fi(c, d) = [c = LOCATION A w-1=“in” A isCapitalized(w)]
* f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)]
* fi(c, d) = [c = DRUG A ends(w, “c”)]

LOCATION LOCATION
in Arcadia in Québec taking Zantac saw Sue

* Models will assign to each feature a weight:
« A positive weight votes that this configuration is likely correct
* A negative weight votes that this configuration is likely incorrect

Example features

* fi(c, d) = [c = LOCATION A w-1= “in” A isCapitalized(w)] > weight 1.8
* file, d)= LOCATION A hasAccentedLatinChar(w)] -> weight -0.6

* fi(c, d) = [c = DRUG A ends(w, “c”)] -> weight 0.3

* Weights will be learned by training on a labeled dataset

More about feature functions:

an indicator function — a yes/no boolean matching function — of properties
of the input and a particular class

f,"((), Ll’) = [(I)(d) ANC= (,/] [Value is 0 or 1]

1/28/19

Feature-Based Models

* The decision about a data point is based only on the features active

at that point.

Data
BUSINESS: Stocks
hit a yearly low ...

Data
... to restructure

bank:MONEY debt.

Data

DT JJ NN ...
The previous fall ...

Label: BUSINESS Label: MONEY Label: NN
Features Features Features

{..., stocks, hit, a, {..., wi=restructure, {w=fall, £.,=)

yearly, low, ...} wa=debt, L=12, ..} w.=previous}

Text Classification Word Sense POS Tagging

Disambiguation

Feature-Based Linear Classifiers

* Linear classifiers at classification time:
« Linear function from feature sets {fi} to classes {c}.
« Assign a weight 4 to each feature fi.
« We consider each class for sample d
« For a pair (c,d), features vote with their weights:
* vote(c) = ZAfi(c.d)

PERSON LOCATION DRUG
in Québec in Québec in Québec

« Choose the class ¢ which maximizes $Ai(c,d)

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAifi(c,d)

exp 3 A (e.d)
TS Sasied)

P(c|d,2)

Feature-Based Linear Classifiers

« fi(c, d) = [c = LOCATION A w-1= “in” A isCapitalized(w)] -> weight 1.8
* f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* fi(c, d) = [c = DRUG A ends(w, “c”)] -> weight 0.3

fi(c, d) = [c = LOCATION A w-1=“in” A isCapitalized(w)] -> weight 1.8
f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
fi(c, d) = [c = DRUG A ends(w, “c”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAifi(c,d)

exp S/ (e.d)
S S 2@ oz vores]

P(c|d,A) =

fi(c, d)=[c=LOCATION A w-1= “in” A isCapitalized(w)] -> weight 1.8
f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
fi(c, d)=[c = DRUG A ends(w, “c”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination Aifi(c,d)

exp 3 S, d)

P(c|d,A) =
Sexp S hSfed)
« P(lin Québec) = e'-8e:0-6/(e! 806 + €03 + €0) = 0.586
- P(lin Québec) = €%3 /(e'8e06 + €03 + %) = 0.238
« P(lin Québec) = e° /(e'-8e0-6 + €93 + ¢0) = 0.176

* The weights are the parameters of the probability
model, combined via a “soft max” function

1/28/19

Feature-Based Linear Classifiers

« Given this model form, we will choose parameters {4;} that maximize
the conditional likelihood of the data according to this model.
* Parameter learning is omitted and not required for this course, but is
often discussed in a machine learning class.
* We construct not only classifications, but probability distributions
over classifications.
* There are other (good!) ways of discriminating classes — SVMs,

boosting, even perceptrons — but these methods are not as trivial
to interpret as distributions over classes.

Other MaxEnt Classifier Examples

* You can use a MaxEnt classifier whenever you want to assign data points
to one of a number of classes:
« Sentence boundary detection (Mikheev 2000)
* Is a period end of sentence or abbreviation?
« Sentiment analysis (Pang and Lee 2002)
* Word unigrams, bigrams, POS counts, ...
* Prepositional phrase attachment (Ratnaparkhi 1998)
* Attach to verb or noun? Features of head noun, preposition, etc.
* Parsing decisions (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

Outline

* Maximum Entropy
* Feedforward Neural Networks
 Recurrent Neural Networks

Neural Network Learning

* Learning approach based on modeling adaptation in biological neural
systems.

* Perceptron: Initial algorithm for learning simple neural networks
(single layer) developed in the 1950’s.

* Backpropagation: More complex algorithm for learning multi-layer
neural networks developed in the 1980’s.

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

+ Neuron pre-activation (or input activation):

a(x) =b+ >, wiz; =b+w'x

* Neuron (output) activation

h(x) = gla(x)) = g(b+ 3, wizy)

+ W are the connection weights
+ b is the neuron bias

- g(+) is called the activation function

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

range determined [/
o7 g(-) 0

(from Pascal Vincent’ sides)

1/28/19

ACTIVATION FUNCTION

Topics: linear activation function

« Performs no input
squashing

* Not very interesting..

ACTIVATION FUNCTION

Topics: sigmoid activation function

* Squashes the neuron’s
pre-activation between
Oand |

* Always positive
* Bounded o

* Strictly increasing

9(a) = sigm(a) = Trepgy

ACTIVATION FUNCTION

Topics: hyperbolic tangent (“tanh”) activation function
* Squashes the neuron’s
pre-activation between
-land | o

« Can be positive or =
negative o

« Bounded

* Strictly increasing

exp(a)—exp(—a) _ exp(2a)—1

g(a) = tanh(a) = ZEEZENTE = sptzaTT

ACTIVATION FUNCTION

Topics: rectified linear activation function

- Bounded below by 0
(always non-negative)

* Not upper bounded e

« Strictly increasing o I

« Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):

def forward(inputs):

' assume and weights are 1-D numpy arrays and bias is a number

cell body_sum = np.sum(inputs * .weights) + .bias
1.0 / (1.0 + math.exp(-cell body sum)) #

return firing rate

firing rate =

Linear Separator

« Since one-layer neuron (aka perceptron) uses linear threshold
function, it is searching for a linear separator that
discriminates the classes.

03

02

1/28/19

ARTIFICIAL NEURON

Topics: capacity of single neuron

* Can solve linearly separable problems

OR (21, 72) AND (77, 22) AND (21, 73)

,
f~a a | a0 o o,
:x AN o 7z 7
N = ’ .
\ ’ ,
of o’ a .70 o of o, 7a
,
N .
)] 0 | 0]
o

ARTIFICIAL NEURON

Topics: capacity of single neuron

= Can't solve non linearly separable problems..

XOR (21, 72)

XOR (1, z2)

Y < A
AS

0 I

AND (77, 25)

* ... unless the input is transformed in a better representation

NEURAL NETWORK
Topics: single hidden layer neural network
- Hidden layer pre-activation:
a(x) = bM + Wx
(u(x]‘ = +3, u“_‘,m)
* Hidden layer activation:

h(x) = g(a(x)) @

« Output layer activation

16 =0 (W + W(Z)Th(l)x)@

output activation function

NEURAL NETWORK

Topics: softmax activation function
* For mutti-class classification:
» we need multiple outputs (I output per class)

» we would like to estimate the conditional probability p(y = ¢|X)

* We use the softmax activation function at the output:

o(a) = softmax(a)

_ [_explan) (b
Toexplac) " X, explac)

» strictly positive

» sums to one

* Predicted class is the one with highest estimated probability

NEURAL NETWORK

Toplces: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h®(x) = x)

a®)(x) = b® + WH k=D (x)

hO)|
» hidden layer activation (J from 1 to L):

h®)(x) = ga® (x))

: % ‘ b®)
» output ayer activation (k=L-+ 1) e
hE+D)(x) = o(at+V) (x)) = £(x)

£ = lambda x: 1.0/(1.0 + np.exp(-x))
X = np.random.randn(3, 1)

1 = f(np.dot(Wl, x) + bl)

2 = £(np.dot(W2, hl) + b2)
out = np.dot(W3, h2) + b3

1/28/19

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network:

(from Pascal Vincent's sices)

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent's slices)

CAPACITY OF NEURAL NETWORK

Topics: universal approximation
* Universal approximation theorem (o, 1991):
» “a single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well,given enough hidden units”
* The result applies for sigmoid, tanh and many other hidden
layer activation functions

* This is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

3 hidden neurons 6 hidden neurons 20 hidden neurons
R oo del ool o
5 .
o o o -
. o .
. .
.. = |
9
S
ol o
o o

How to train a neural network?

Topics: multilayer neural network
* Could have L hidden layers:

» layer input activation for k>0 (h®(x) = x)
a®) (x) = b® 4+ WERE-D (x)

» hidden layer activation (k from 1 to L):
h®(x) = g(a®(x))

» output layer activation (k=L+1):

h(L+1)(x) o o(a(L+1)(x)) =)

1/28/19

Empirical Risk Minimization

Topics: empirical risk minimization, regularization

« Empirical risk minimization

» framework to design learning algorithms

argomin % Z 1(f(xD;0),y®) + 2(0)
t

» U(f(x®;0),y®) isaloss function
» (@) is a regularizer (penalizes certain values of @)
« Learning is cast as optimization
» ideally, we'd optimize dlassification error; but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

LOSS FUNCTION

Topics: loss function for classification

+ Neural network estimates f(X)e = p(y = c[x)

+ we could maximize the probabilties of y(® given x® in the training set

* To frame as minimization, we minimize the

negative log-likelihood natural log (In)

I(£(x),y) = = 2, Ly=c) log [(%) = —log f(X),

» we take the log to simplify for numerical stability and math simplicity

» someimes referred Lo as cross-entropy

Total error on training set

0 L n " N
0 50 100 150 200 250 300 350 400
Number of epochs

[figure from Greg Mori's slides]

REGULARIZATION

Topics: L2 regularization

20) =5, 5., (W) = SLIw eI

Empirical Risk Minimization

Topics: empirical risk minimization, regularization

« Empirical risk minimization

» framework to design learning algorithms

argmin 7 37 1(7(x(%:6).5) + A(6)
t

v 1(f(x®);8),y®) is aloss function
» () is a regularizer (penalizes certain values of)
« Learning is cast as optimization
» ideally, we'd optimize dlassification error but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

A=0.001 A=0.01 A=0.1
: g . . 4 .
¥ . & & . o ' o)

Y . . . R .

[http://cs231n.github.io/neural-networks-1/]

1/28/19

INITIALIZATION Model Learning

Topics: initialization . .))
* Backpropagation algorithm (not required for this course)

* For biases
» initialize all to O
* For weights
» Can't initialize weights to 0 with tanh activation
- we can show that all gradients would then be 0 (sadidie point)

» Can't initialize all weights to the same value

- we can show that al hidden units in a layer will aiways behave the same
size of b¥)(x)
need 1o break symmetry

» Recipe: sample WY from U7 [, b] where b= \/ufif,

the idea is to sample around 0 but break symmetr;

ather values of b could work well (not. an exact science) (see Glorot & Bengio, 2010)

QOutline Long Distance Dependencies

« It is very difficult to train NNs to retain information over many time steps
* This make is very difficult to handle long-distance dependencies, such as subject-
verb agreement.
* Feedforward Neural Networks
* E.g. Jane walked into the room. John walked in too. It was late in the day. Jane
* Recurrent Neural Networks said hito ?

* Maximum Entropy

®

Recurrent Neural Networks Recurrent Neural Networks
Feed-forward NN Recurrent NN Feed-forward NN Recurrent NN
h=g¢(Vx+c) h; = g(Vx; + Uh;—y +¢) h=g(Vx+c) =g~ -Yhper—tg)
y=Wh+b §:=Wh, +b §=Wh+b hy = g(V[xe hy_i] +¢)
y¢=Wh; +b
[L] @ :] — @::I
 — — = —

1/28/19

Long-Short Term Memory Networks (LSTMs)

® ® ©
t 1 t

RN

A £ EE ‘ A E
| 1 =
® ® ©

Neural Network Pointwise Vector
Operation Transfer ~ Concatenate Copy

Another Visualization

Forget some of the past Add ﬁw memories
!

. anh.
0 00
(el (o] (]

Capable of modeling long-distant dependencies between states.

Figure: Christopher Olah

Long-Short Term Memory Networks (LSTMs)

L it o(Wilxe, he] + b))
*(fz—’\' fo| | o(Welxe. he] + by)
A o | O(W;[x,. he] + b:)

8 f(We(xe. he] + bg)

ce=fxc1+ixg

hy =0, % f(c;)

Use gates to control the information to
be added from the input, forgot from the
previous memories, and outputted

o and f are sigmoid and tanh function
respectively, to map the value to [-1, 1]

Sequence to Sequence

* Encoder/Decoder framework maps one sequence to a "deep vector'
then another LSTM maps this vector to an output sequence.

Encoder Decoder

O0—0—0—0—{|-e—e—@

C’est mon chat

Summary of LSTM Application Architectures

one to many many to one many to many many to many

B8 B 00 gog

[
i goo 0oo goo

Image Captioning Video Activity Recog Video Captioning POS Tagging

Text Classification Machine Translation ~ Language Modeling

Successful Applications of LSTMs

* Speech recognition: Language and acoustic modeling

* Sequence labeling
* POS Tagging
* NER
* Phrase Chunking

* Neural syntactic and semantic parsing
* Image captioning
* Sequence to Sequence

* Machine Translation (Sustkever, Vinyals, & Le, 2014)
* Video Captioning (input sequence of CNN frame outputs)

10

Bi-directional LSTM (Bi-LSTM)

« Separate LSTMs process sequence forward and backward and
hidden layers at each time step are concatenated to form the cell
output.

Py
Buckward
prosvin SRt

™

Forvard _((NG
—{ 1sm foof s ool s

AN NN
E Y

1/28/19

11

