CS 6120/CS4120: Natural Language Processing
Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage:www.ccs.neu.edu/home/luwang

Terminology: lemma and wordform

- A lemma or citation form
- Same stem, part of speech, rough semantics
-A wordform
- The inflected word as it appears in text

Wordform	Lemma
banks	bank
sung	sing
duermes	dormir

Outline

- Word Senses and Word Relations
- Word Similarity
- Word Sense Disambiguation

Homonymy

Homonyms: words that share a form but have unrelated, distinct meanings:

- bank ${ }_{1}$: financial institution, bank $_{2}$: sloping land
- bat ${ }_{1}$: club for hitting a ball, bat ${ }_{2}$: nocturnal flying mammal

1. Homographs (bank/bank, bat/bat)
2. Homophones:
3. Write and right
4. Piece and peace

Homonymy causes problems for NLP applications

- Information retrieval
-"bat care"
- Machine Translation
- bat: murciélago (animal) or bate (for baseball)
- Text-to-Speech
- bass (stringed instrument) vs. bass (fish)

-1. The bank was constructed in 1875 out of local red brick.
-2. I withdrew the money from the bank

Polysemy

-1. The bank was constructed in 1875 out of local red brick.

- 2. I withdrew the money from the bank
- Are those the same sense?
- Sense 2: "A financial institution"

Sense 1: "The building belonging to a financial institution"

- A polysemous word has related meanings
- Most non-rare words have multiple meanings

Metonymy or Systematic Polysemy: A systematic relationship between senses

- Lots of types of polysemy are systematic
- School, university, hospital
- All can mean the institution or the building.
- A systematic relationship:
- Building \Longleftrightarrow Organization
- Other such kinds of systematic polysemy:

Author (Jane Austen wrote Emma)
\Leftrightarrow Works of Author (I love Jane Austen)
Tree (Plums have beautiful blossoms)
\Leftrightarrow Fruit (I ate a preserved plum)

How do we know when a word has more than one sense?
-The "zeugma" test: Two senses of serve?

- Which flights serve breakfast?
- Does Lufthansa serve Philadelphia?

Does Lufthansa serve breakfast and San Jose?

- Since this conjunction sounds weird,
- we say that these are two different senses of "serve"

Synonyms

- But there are few (or no) examples of perfect synonymy
- Even if many aspects of meaning are identical
- Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.
- Example:
- Water/ $\mathrm{H}_{2} \mathrm{O}$
- Big/large

Brave/courageous

Synonymy is a relation
between senses rather than words

- Consider the words big and large
- Are they synonyms?
- How big is that plane?
-Would I be flying on a large or small plane?
- How about here
- Miss Nelson became a kind of big sister to Benjamin
- Miss Nelson became a kind of large sister to Benjamin.
- Why?
- big has a sense that means being older, or grown up
- large lacks this sense

Antonyms

- Senses that are opposites with respect to one feature of meaning
- Otherwise, they are very similar!
dark/light short/long fast/slow rise/fall hot/cold up/down in/out
- More formally: antonyms can
- define a binary opposition or be at opposite ends of a scale
- long/short, fast/slow
- Be reversives:

Hyponymy more formally

- Extensional:
- The class denoted by the superordinate extensionally includes the class denoted by the hyponym
- Entailment:
- A sense A is a hyponym of sense B if being an A entails being $a B$
- Hyponymy is usually transitive
- (A hypo B and B hypo C entails A hypo C)
- Another name: the IS-A hierarchy
- A IS-A B (or A ISA B)
- B subsumes A
- rise/fall, up/down

Superordinate/hyper	vehicle	fruit	furniture

Subordinate/hyponym	car	mango	chair

- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other
- car is a hyponym of vehicle
- mango is a hyponym of fruit
- Conversely hypernym/superordinate ("hyper is super")
- vehicle is a hypernym of car
- fruit is a hypernym of mango

Hyponymy and Hypernymy

Meronymy

- The part-whole relation

WordNet 3.0

- A hierarchically organized lexical database
- A leg is part of a chair; a wheel is part of a car

Wheel is a meronym of car, and car is a holonym of wheel.

EuroWordNet
• WordNets for
• Dutch
- Italian
\quad - Spanish
\quad - German
\quad - Crench
• Estonian

Senses of "bass" in Wordnet
Noun

- Σ ((i) bass the lowest part of the mivical range)
- S. (in) bass, bass part the lomest part in polyphonic musid
- I ((0) bass, bassa (an adilt male singer with the lowest veice)
- S. (in) sea bass, bass the iean flesh of a sultwater finh of the fame
- §. (in) freshmaser bass, bass cay of varosi Norts American freshwaser fish
- with han fiest lespecialy ef te gevis Merspterusil

IS. (n) bass, bass woice, basso the losest afuit male singing voice)
instruments)

- I. (in) bass (nontectnical name for any of nomerous edible marine and
freithater spiny-finned fates)

Adjective

deep woice", a bass roice is lawer shan a Aantone voice". "a bass clarinel"

How is "sense" defined in WordNet?

- The synset (synonym set), the set of near-synonyms, instantiates a sense or concept, with a gloss
- Example: chump as a noun with the gloss:
"a person who is gullible and easy to take advantage of"
- This sense of "chump" is shared by 9 words:
chump ${ }^{1}$, fool ${ }^{2}$, gull ${ }^{1}{ }^{\prime}$ mark 9, patsy ${ }^{1}$, fall guy ${ }^{1}$
sucker, soot touch, mug
- Each of these senses have this same gloss
- (Not every sense; sense 2 of gull is the aquatic bird)

WordNet Hypernym Hierarchy for "bass"

MeSH: Medical Subject Headings
thesaurus from the National Library of Medicine

- MeSH (Medical Subject Headings)
- 177,000 entry terms that correspond to 26,142 biomedical "headings"
- Hemoglobins

Synset
Entry Terms: Eryhem, Ferrous Hemoglobin, Hemoglobin
Definition: The oxygen-carrying proteins of ERYTHROCYTES. They
are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements

Uses of the MeSH Ontology

- Provide synonyms ("entry terms")
- E.g., glucose and dextrose
- Provide hypernyms (from the hierarchy)
- E.g., glucose ISA monosaccharide
- Indexing in MEDLINE/PubMED database
- NLM's bibliographic database
- 20 million journal articles

Each article hand-assigned 10-20 MeSH terms

Word Similarity

- Synonymy: a binary relation
- Two words are either synonymous or not
- Similarity (or distance): a looser metric (more useful in practice!)
- Two words are more similar if they share more features of meaning
- Similarity is properly a relation between senses
- Bank ${ }^{1}$ is similar to fund ${ }^{3}$
- Bank 2 is similar to slope ${ }^{5}$
- But we'll compute similarity over both words and senses

Two classes of similarity algorithms

- Thesaurus-based algorithms
- Are words "nearby" in hypernym hierarchy?
- Do words have similar glosses (definitions)?
- Distributional algorithms
- Do words have similar distributional contexts?

Outline

- Word Senses and Word Relations
- Word Similarity
- Word Sense Disambiguation

Why word similarity

- A practical component in lots of NLP tasks
- Question answering
- Natural language generation
- Automatic essay grading
- Plagiarism detection
- A theoretical component in many linguistic and cognitive tasks
- Historical semantics
- Models of human word learning
- Morphology and grammar induction

Refinements to path-based similarity

- pathlen $\left(c_{1}, c_{2}\right)=1+$ number of edges in the shortest path in the hypernym graph between sense nodes c_{1} and c_{2}
- ranges from 0 to 1 (identity)
- $\operatorname{simpath}\left(c_{1}, c_{2}\right)=\frac{1}{\text { pathlen }\left(c_{1}, c_{2}\right)}$
$\cdot \operatorname{wordsim}\left(w_{1}, w_{2}\right)=\max \operatorname{sim}\left(c_{1}, c_{2}\right)$

$$
c_{1} \in \operatorname{senses}\left(w_{1}\right), c_{2} \in \operatorname{senses}\left(w_{2}\right)
$$

Example: path-based similarity $\operatorname{simpath}\left(c_{1}, c_{2}\right)=1 /$ pathlen $\left(c_{1}, c_{2}\right)$
simpath(nickel,coin) $=1 / 2=.5$
simpath(fund, budget) $=1 / 2=.5$
simpath(nickel,currency) $=1 / 4=.25$
$\operatorname{simpath}($ nickel,money) $=1 / 6=.17$
simpath(coinage,Richter scale) $=1 / 6=.17$

Information content similarity metrics

Resnik 1995

- Let's define $P(c)$ as
- The probability that a randomly selected word in a corpus is an instance of concept c
- Formally: there is a distinct random variable, ranging over words, associated with each concept in the hierarchy
for a given concept, each observed noun is either
- a member of that concept with probability $\mathrm{P}(\mathrm{c})$
- All words are members of the root node (Entity)
- $\mathrm{P}($ root $)=1$
- The lower a node in hierarchy, the lower its probability

Information content similarity Train by counting in a corpus - Each instance of hill counts toward frequency of natural elevation, geological formation, entity, etc - Let words(c) be the set of all words that are children of node $c_{\text {h }}^{\text {hill }}$ • words("geo-formation") $=$ \{hill,ridge,grotto,coast,cave,shore,natural elevation $\}$
$P(c)=\frac{\sum_{w \in \text { words }(c)} \operatorname{count}(w)}{N}$

Information content similarity

- WordNet hierarchy augmented with probabilities $\mathrm{P}(\mathrm{c})$
D. Lin. 1998. An Information-Theoretic Definition of Similarity. ICML 1998

Information content: definitions	
	1.3 bits ayy 0 ons
- Information content: $I C(c)=-\log P(c)$	
- Most informative subsumer (Lowest common subsumer) $\operatorname{LCS}\left(\mathrm{c}_{1}, \mathrm{C}_{2}\right)=$ The most informative (lowest) node in the hierarchy subsuming both c_{1} and c_{2}	

Dekang Lin method

Dekang Lin. 1998. An Information-Theoretic Definition of Similarity. ICML

- Intuition: Similarity between A and B is not just what they have in common
- The more differences between A and B, the less similar they are:
- Commonality: the more A and B have in common, the more similar they are
- Difference: the more differences between A and B, the less similar
- Commonality: IC(common(A,B))
- Difference: IC(description(A,B))-IC(common(A,B))

Using information content for similarity: the Resnik method

Philip Ressin. 1995. Using Information Content to Evaluate Semantic Simiarity in a Taxonomy. UCAA 1995.
Philip Ressik. 1999. Semantic Similarity in a Taxonony. An Information-Based Measure and its Application Problems of Ambiguity in Natural Language. JAAR $11,95-130$.

- The similarity between two words is related to their common information
-The more two words have in common, the more similar they are
- Resnik: measure common information as:
- The information content of the most informative (lowest) subsumer (MIS/LCS) of the two nodes
- $\operatorname{sim}_{\text {resnik }}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)=-\log \mathrm{P}\left(\operatorname{LCS}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)\right)$

Dekang Lin similarity theorem

- The similarity between A and B is measured by the ratio between the amount of information needed to state the commonality of A and B and the information needed to fully describe what A and B are

$$
\operatorname{sim}_{\text {Lin }}(A, B) \propto \frac{\operatorname{IC}(\operatorname{common}(A, B))}{\operatorname{IC(\operatorname {description}(A,B))}}
$$

- Lin (altering Resnik) defines IC(common(A,B)) as 2 x information of the LCS

$$
\operatorname{sim}_{\text {Lin }}\left(c_{1}, c_{2}\right)=\frac{2 \log P\left(L C S\left(c_{1}, c_{2}\right)\right)}{\log P\left(c_{1}\right)+\log P\left(c_{2}\right)}
$$

Lin similarity function

$\operatorname{sim}_{\text {Lin }}(A, B)$	$=\frac{2 \log P\left(L C S\left(c_{1}, c_{2}\right)\right)}{\log P\left(c_{1}\right)+\log P\left(c_{2}\right)}$
$\operatorname{sim}_{\text {Lin }}($ hill, coast $)$	$=\frac{2 \log P(\text { geological-formation })}{\log P(\text { hill })+\log P(\text { coast })}$
	$=\frac{2 \ln 0.00176}{\ln 0.0000189+\ln 0.0000216}$
	$=.59$

The (extended) Lesk Algorithm

- A thesaurus-based measure that looks at glosses
- Two concepts are similar if their glosses contain similar words
- Drawing paper: paper that is specially prepared for use in drafting
- Decal: the art of transferring designs from specially prepared paper to a wood or glass or metal surface
- For each n-word phrase that's in both glosses
- Add a score of n^{2}
- Paper and specially prepared for $1+2^{2}=5$
- Compute overlap also for other relations - glosses of hypernyms and hyponyms

```
Libraries for computing thesaurus-based
similarity
-NLTK
    - http://nltk.github.com/api/nltk.corpus.reader.html?highlight=similarity
        nltk.corpus.reader.WordNetCorpusReader.res similarity
-WordNet::Similarity
    -http://wn-similarity.sourceforge.net/
    Web-based interface:
        - http://marimba.d.umn.edu/cgi-bin/similarity/similarity.cgi
```


Evaluating similarity

- Extrinsic (task-based, end-to-end) Evaluation
- Question answering
- Spell checking
- Essay grading
- Word sense disambiguation
- Intrinsic Evaluation
- Correlation between algorithm and human word similarity ratings
- Wordsim353: 353 noun pairs rated $0-10$. sim(plane,car) $=5.77$
- Taking multiple-choice vocabulary tests
impo

Outline

Word Senses and Word Relations

- Word Similarity
-Word Sense Disambiguation

Lexical Ambiguity

- Most words in natural languages have multiple possible meanings.
- "pen" (noun)
- The dog is in the pen
- "take" (verb)
- Take one pill every morning.

Take the first right past the stoplight.

- Syntax helps distinguish meanings for different parts of speech of an ambiguous word.
- "conduct" (noun or verb)
onduct in class is unacceptable.
- John will conduct the orchestra on Thursday.

Motivation for
Word Sense Disambiguation (WSD)

- Many tasks in natural language processing require disambiguation of ambiguous words.
- Question Answering
- Information Retrieval
- Machine Translation
- Text Mining
- Phone Help Systems
- Understanding how people disambiguate words is an interesting problem that can provide insight in psycholinguistics

Word Sense Disambiguation (WSD)

- Given
- A word in context
- A fixed inventory of potential word senses
- Decide which sense of the word this is
-What set of senses?
- English-to-Spanish MT: set of Spanish translations
- Speech Synthesis: homographs like bass and bow
- In general: the senses in a thesaurus like WordNet

Senses Based on Needs of Translation

- Only distinguish senses that are translate to different words in some other language.
- play: tocar vs. jugar
- know: conocer vs. saber
- be: ser vs. estar
- take: llevar vs. tomar vs. sacar
- May still require overly fine-grained senses
river in French is either
- fleuve: flows into the ocean
- rivière: does not flow into the ocean

Two variants of WSD task

- Lexical Sample task
- Small pre-selected set of target words (line, plant)
- And inventory of senses for each word
- Supervised machine learning: train a classifier for each word
- All-words task
- Every word in an entire text

A lexicon with senses for each word
Data sparseness: can't train word-specific classifiers

WSD Methods

- Supervised Machine Learning
- Thesaurus/Dictionary Methods
- Semi-Supervised Learning

Supervised Machine Learning Approaches

- Supervised machine learning approach:
- a training corpus of words tagged in context with their sense
- used to train a classifier that can tag words in new text
- Summary of what we need:
- the tag set ("sense inventory")
- the training corpu
- A set of features extracted from the training corpus
- A classifier

Supervised WSD 1: WSD Tags

What's a tag?
A dictionary sense?

- For example, for WordNet an instance of "bass" in a text has 8 possible tags or labels (bass1 through bass8, as noun).

8 senses of "bass" in WordNet

1.bass - (the lowest part of the musical range)
2.bass, bass part - (the lowest part in polyphonic music)
3.bass, basso - (an adult male singer with the lowest voice)
4.sea bass, bass - (flesh of lean-fleshed saltwater fish of the family Serranidae)
5.freshwater bass, bass - (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
6.bass, bass voice, basso - (the lowest adult male singing voice)
7.bass - (the member with the lowest range of a family of musical instruments)
8.bass - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Supervised WSD 2: Get a corpus

- Lexical sample task:
- Line-hard-serve corpus - 4000 examples of each
-Interest corpus - 2369 sense-tagged examples
- All words:

Semantic concordance: a corpus in which each open-class word is labeled with a sense from a specific dictionary/thesaurus.

- SemCor: 234,000 words from Brown Corpus, manually tagged with WordNet senses - SENSEVAL-3 competition corpora - 2081 tagged word tokens

Feature vectors

- A simple representation for each observation (each instance of a target word)
- Vectors of sets of feature/value pairs
- Represented as a ordered list of values
- These vectors represent, e.g., the window of words around the target

Supervised WSD 3: Extract feature vectors

Two kinds of features in the vectors

- Collocational features and bag-of-words features
- Collocational
- Features about words at specific positions near target word
- Often limited to just word identity and POS
- Bag-of-words
- Features about words that occur anywhere in the window (regardless of position)
- Typically limited to frequency counts

Examples

- Example text (WSJ)

An electric guitar and bass player stand off to one side not really part of the scene,
-Assume a window of $+/-2$ from the target

Collocational features

- Position-specific information about the words and collocations in window
- guitar [and bass player stand

$$
\left[w_{i-2}, \operatorname{POS}_{i-2}, w_{i-1}, \operatorname{POS}_{i-1}, w_{i+1}, \operatorname{POS}_{i+1}, w_{i+2}, \operatorname{POS}_{i+2}, w_{i-2}^{i-1}, w_{i}^{i+1}\right]
$$

quitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand - word 1,2,3 grams in window of ± 3 is common

Bag-of-words features

- "an unordered set of words" - position ignored
- Counts of words occur within the window.
- First choose a vocabulary
- Then count how often each of those terms occurs in a given window
- sometimes just a binary "indicator" 1 or 0

Co-Occurrence Example

- Assume we've settled on a possible vocabulary of 12 words in "bass" sentences:
[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]
- The vector for:
guitar and bass player stand
[0,0,0,1,0,0,0,0,0,0,1,0

Syntactic Relations
(Ambiguous Nouns)

- For an ambiguous noun, it is useful to know what verb it is an object of:
- "played the piano and the horn"
"wounded by the rhinoceros' horn"
May also be useful to know what verb it is the subject of
- "the bank near the river loaned him $\$ 100$ "
- "the bank is eroding and the bank has given the city the money to repair it"

Syntactic Relations
(Ambiguous Verbs)

- For an ambiguous verb, it is very useful to know its direct object.
- "played the game"
"played the guitar"
- "played the risky and long-lasting card game
- "played the beautiful and expensive guitar"
- "played the big brass tuba at the football game"
- "played the game listening to the drums and the tubas"
- May also be useful to know its subject:
- "The game was played while the band played."
"The game that included a drum and a tuba was played on Friday."

Syntactic Relations
(Ambiguous Adjectives)

- For an ambiguous adjective, it useful to know the noun it is modifying.
"a brilliant young man"
"a brilliant yellow light"
"a wooden writing desk"
- "a wooden acting performance"

Classification: definition

- Input:
- a word w and some features f
- a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{J}\right\}$
- Output: a predicted class $c \in C$

Classification Methods:

Supervised Machine Learning

- Input:
- a word w in a text window d (which we'll call a "document")
- a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{j}\right\}$

A training set of m hand-labeled text windows again called "documents" $\left(d_{1}, c_{1}\right), \ldots,\left(d_{m}, c_{m}\right)$

- Output:

- a learned classifier $\gamma: d \rightarrow c$

Classification Methods:
Supervised Machine Learning

- Any kind of classifier
- Naive Bayes
- Logistic regression
- Neural Networks
- Support-vector machines
- k-Nearest Neighbors
-...
\qquad
\qquad \square

Applying Naive Bayes to WSD

- $\mathrm{P}(\mathrm{c})$ is the prior probability of that sense
- Counting in a labeled training set.
- $P(w \mid c)$ conditional probability of a word given a particular sense
- $\mathrm{P}(\mathrm{w} \mid \mathrm{c})=$ count $(\mathrm{w}, \mathrm{c}) /$ count (c)
- We get both of these from a tagged corpus like SemCor

WSD Evaluations and baselines

- Best evaluation: extrinsic ('end-to-end', 'task-based’) evaluation
- Embed WSD algorithm in a task and see if you can do the task better!
- What we often do for convenience: intrinsic evaluation

Exact match sense accuracy

- \% of words tagged identically with the human-manual sense tags
- Usually evaluate using held-out data/test data from same labeled corpus
- Baselines
- Most frequent sense
- The Lesk algorithm

The Simplified Lesk algorithm

- Let's disambiguate "bank" in this sentence:

The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities

- given the following two WordNet senses:

bank ${ }^{1}$	Gloss:	a financial institution that accepts deposits and channels the money into lending activities "he cashed a check at the bank", "that bank holds the mortgage on my home"
bank 2	Examples: Examples:	sloping land (especially the slope beside a body of water) "they pulled the canoe up on the bank", "he sat on the bank of the river and watched the currents"

The Corpus Lesk algorithm

- Assumes we have some sense-labeled data (like SemCor)
- Take all the sentences with the relevant word sense:

These short, "streamlined" meetings usually are sponsored by local banks", Chambers of Commerce, trade associations, or other civic organizations.

- Now add these to the gloss + examples for each sense, call it the "signature" of a sense.
- Choose sense with most word overlap between context and signature.

Corpus Lesk: IDF weighting

- Instead of just removing function words
- Down-weights words that occur in every 'document' (gloss, example, etc)

These are generally function words, but is a more fine-grained measure

- Weigh each overlapping word by inverse document frequency

Corpus Lesk: IDF weighting

- Weigh each overlapping word by inverse document frequency
- N is the total number of documents
- $\mathrm{df}_{\mathrm{i}}=$ "document frequency of word i "
- = \# of documents with word I
$\operatorname{idf}_{i}=\log \left(\frac{N}{d f_{i}}\right)$
$\operatorname{score}\left(\right.$ sense $_{i}$, context $\left._{j}\right)=\sum_{w}$ $w \in \operatorname{overlap}\left(\right.$ signature $_{i}$, context $\left._{j}\right)$

Bootstrapping

- For bass
- Rely on "One sense per collocation" rule
- A word reoccurring in collocation with the same word will almost surely have the same
- the word play occurs with the music sense of bass
- the word fish occurs with the fish sense of bass

Semi-Supervised Learning

Problem: supervised and dictionary-based approaches require large hand-built resources What if you don't have so much training data?

Solution: Bootstrapping

Generalize from a very small hand-labeled seedset.

Sentences extracting using "fish" and "play"

We need more good teachers - right now, there are only a half a dozen who can play the free bass with ease.

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhap.
The researchers said the worms spend part of their life cycle in such fish as Pacific salmon and striped bass and Pacific rockfish or snapper.
And it all started when fishermen decided the striped bass in Lake Mead were too skinny.

Summary: generating seeds

1) Hand labeling
2) "One sense per collocation":

A word reoccurring in collocation with the same word will almost surely have the same sense.
3) "One sense per discourse":

- The sense of a word is highly consistent within a document - Yarowsky (1995)
- (At least for non-function words, and especially topic-specific words)

Summary

- Word Sense Disambiguation: choosing correct sense in context
- Applications: MT, QA, etc
- Three classes of Methods

Supervised Machine Learning: Naive Bayes classifier

- Thesaurus/Dictionary Methods
- Semi-Supervised Learning

- Main intuition

There is lots of information in a word's context

- Simple algorithms based just on word counts can be surprisingly good

