CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Brown Clusters

Brown Clusters -- Unsupervised

- Goal
 - To learn about regularities in words
 - By clustering words into groups
- Motivation
 - Primarily to deal with word sparsity
 - Also to reduce amount of necessary training data

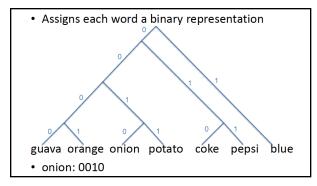
Brown Clustering Algorithm

- Input: a (large) corpus of words
- Output 1: a partition of words into word clusters
- Output 2 (generalization of 1): a hierarchical word clustering

- Example Clusters
 Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
 June March July April January December October November September August
- people guys folks fellows CEOs chaps doubters commies unfortunates blokes down backwards ashore sideways southward northward overboard aloft downwards adrift
- water gas coal liquid acid sand carbon steam shale iron
- great big vast sudden mere sheer gigantic lifelong scant colossal man woman boy girl lawyer doctor guy farmer teacher citizen
- American Indian European Japanese German African Catholic Israeli Italian Arab
- pressure temperature permeability density porosity stress velocity viscosity gravity tension mother wife father son husband brother daughter sister boss uncle
- machine device controller processor CPU printer spindle subsystem compiler plotter
- John George James Bob Robert Paul William Jim David Mike anyone someone anybody somebody
- anyone someone anyony someousy feet miles pounds degrees inches barrels tons acres meters bytes director chief professor commissioner commander treasurer founder superintendent dean custodian liberal conservative parliamentary royal progressive
- visional separatist federalist PQ

• Assigns each word a binary representation

guava orange onion potato coke pepsi blue



```
· Different prefix lengths: different abstractions
                                   • 111111111100110 officer
• <u>111111110110000</u> <u>slapped</u>
                                   • 111111111100110 acquaintance
• 111111110110000 shattered
  111111110110000 commissioned
                                  • 111111111100110
                                                      policymaker
                                   • 111111111100110 instructor
  111111110110000 drafted

    111111111100110 investigator

 1111111110110000 authorized
                                   • 111111111100110 advisor
  111111110110000 authorised
                                   • 111111111100110 aide
• 111111110110000 imposed
                                   • 111111111100110 expert
• 111111110110000 established
                                   • 111111111100110 adviser
• 111111110110000 developed
```

• <u>111110100</u>	<u>Clinton</u>	•	<u>111111100</u>	<u>Bill</u>
• 111110100	Aleman	•	111111100	Boris
• 111110100	Zeroual	•	111111100	Warren
• 111110100	Sampras	•	111111100	Fidel
• 111110100	Barzani	•	111111100	Yasser
• 111110100	Cardoso	•	111111100	Kenneth
• 111110100	Kim	•	111111100	Viktor
• 111110100	King	•	111111100	Benjamin
• 111110100	Saddam	•	111111100	Jacques
• 111110100	Netanyahu	•	111111100	Bob
• 111110100	Dole		111111100	Alexander

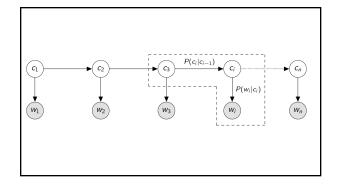
Intuition • Similar words appear in similar contexts • Similar words have similar distributions of words to their immediate left and right eat juice grow seeds grow seeds ... orange

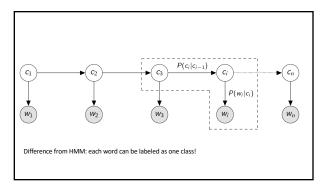
Formulation

- V is the set of all words seen in the corpus
- Say C: V → {1, 2,...k} is a partition of the vocabulary into k classes (k ~ 1000)
- The model: $(C(\mathbf{w}_0) \text{ is a special } < > \text{state})$ $p(w_1,w_2,...,w_N) = \prod_{i=1}^N e(w_i \mid C(w_i)) q(C(w_i) \mid C(w_{i-1}))$

Formulation

- V is the set of all words seen in the corpus
- Say C: V → {1, 2,...k} is a partition of the vocabulary into k classes (k ~ 1000)





C(I)=1, C(ate)=C(drank)=2 C(guava)=C(pepsi)=3, C(and)=4

 $\begin{array}{l} e(l\,|\,1)=1,\,e(ate\,|\,2)=\,e(drank\,|\,2)=\,0.3\\ e(guava\,|\,3)=e(pepsi\,|\,3)=0.1,\,e(and\,|\,4)=1\\ q(1\,|\,0)=0.2,\,q(2\,|\,1)=0.4,\,q(3\,|\,2)=0.3,\,q(4\,|\,3)=0.1,\,q(2\,|\,4)=0.2 \end{array}$

C(I)=1, C(ate)=C(drank)=2 C(guava)=C(pepsi)=3, C(and)=4

 $\begin{array}{l} e(l\,|\,1)=1,\,e(ate\,|\,2)=\,e(drank\,|\,2)=\,0.3\\ e(guava\,|\,3)=e(pepsi\,|\,3)=0.1,\,e(and\,|\,4)=1\\ q(1\,|\,0)=0.2,\,q(2\,|\,1)=0.4,\,q(3\,|\,2)=0.3,\,q(4\,|\,3)=0.1,\,q(2\,|\,4)=0.2 \end{array}$

P(I ate guava and drank pepsi) = 0.2*1*0.4*0.3*0.3*0.1*0.1*1*0.2*0.3*0.3*0.1

The Model

- Vocabulary V
- A function C: V → {1..k}
 partitioning of vocabulary into k classes
- Emission probabilities e(w | C(w))
- Transition probability q(c'|c)

Scoring a Partition: Quality (C) $\frac{1}{N} \sum_{t=1}^{N} \log \left(e(w_t \mid C(w_t)) q(C(w_t) \mid C(w_{t-1})) \right) \qquad \text{N is the number of words in the corpus}$ $= \sum_{c,c'} p(c,c') \log \left(\frac{p(c,c')}{p(c)p(c')} \right) + \sum_{w} p(w) \log p(w)$ $\frac{\text{Mutual information (MI)}}{p(c)} \quad \text{constant}$ n(c): #occurences of c in corpus under function C n(c,c'): #occurences of (c,c') in corpus under function C $p(c,c') = \frac{n(c,c')}{N} \qquad p(c) = \frac{n(c)}{N}$

Proof

$$\begin{aligned} \text{Quality}(C) &=& \frac{1}{n} \sum_{i=1}^{n} \log P(C(w_{i}) | C(w_{i-1})) P(w_{i} | C(w_{i})) \\ &=& \sum_{w,w'} \frac{n(w,w')}{n} \log P(C(w') | C(w)) P(w' | C(w')) \end{aligned}$$

Proof

$$\begin{aligned} \text{Quality}(C) &=& \frac{1}{n} \sum_{i=1}^{n} \log P(C(w_{i}) | C(w_{i-1})) P(w_{i} | C(w_{i})) \\ &=& \sum_{w,w'} \frac{n(w,w')}{n} \log P(C(w') | C(w)) P(w' | C(w')) \\ &=& \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w),C(w'))}{n(C(w))} \frac{n(w')}{n(C(w'))} \end{aligned}$$

Proof

$$\begin{aligned} \text{Quality}(C) &= \frac{1}{n} \sum_{i=1}^{n} \log P(C(w_i)|C(w_{i-1})) P(w_i|C(w_i)) \\ &= \sum_{w,w'} \frac{n(w,w')}{n} \log P(C(w')|C(w)) P(w'|C(w')) \\ &= \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w),C(w'))}{n(C(w))} \frac{n(w')}{n(C(w'))} \\ &= \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w),C(w'))n}{n(C(w))n(C(w'))} + \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(w')}{n} \end{aligned}$$

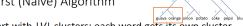
Proo

$$\begin{aligned} \text{Quality}(C) &= \frac{1}{n} \sum_{i=1}^{n} \log P(C(w_{i})|C(w_{i-1})) P(w_{i}|C(w_{i})) \\ &= \sum_{w,w'} \frac{n(w,w')}{n} \log P(C(w')|C(w)) P(w'|C(w')) \\ &= \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w),C(w'))}{n(C(w))} \frac{n(w')}{n(C(w'))} \\ &= \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w),C(w'))n}{n(C(w))n(C(w'))} + \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(w')}{n} \\ &= \sum_{c,c'} \frac{n(c,c')}{n} \log \frac{n(c,c')n}{n(c)n(c')} + \sum_{w'} \frac{n(w')}{n} \log \frac{n(w')}{n} \end{aligned}$$

A First (Naïve) Algorithm

- Start with |V| clusters: each word gets its own cluster
- Our aim is to find k final clusters
- We run |V| k merge steps:
 - At each merge step we pick two clusters $c_{\rm i}$ and $c_{\rm j},$ and merge them into a single cluster
 - We greedily pick merges such that Quality(C) for the clustering C after the merge step is maximized at each stage

A First (Naïve) Algorithm



- Start with |V| clusters: each word gets its own cluster
- Our aim is to find k final clusters
- We run |V| k merge steps:
 - At each merge step we pick two clusters $c_{\rm i}$ and $c_{\rm j}$, and merge them into a single cluster
 - We greedily pick merges such that Quality(C) for the clustering C after the merge step is maximized at each stage

A First (Naïve) Algorithm

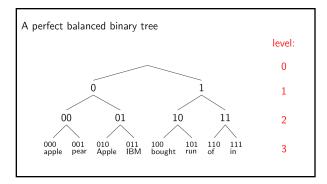
- Cost?
 - Naive = $O(|V|^5)$. Calculate everything on-the-fly!
 - Improved algorithm gives $O(|V|^3)$ Store word transitions!
 - still two slow for realistic values of $|\textit{\textbf{V}}|$

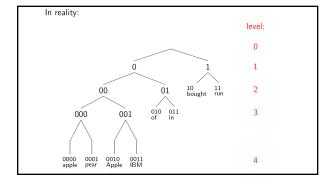
A Second Algorithm

- New parameter: m (e.g., m = 1000)
- Take the top m most frequent words, put each into its own cluster, $c_{1}\!, c_{2}\!, ... c_{m}$
- For i = (m + 1) ... |V|
 - Create a new cluster, $c_{\mathsf{m}+1}$, for the i'th most frequent word. We now have m + 1 clusters
- Choose two clusters from $\mathbf{c_1} \dots \mathbf{c_{m+1}}$ to be merged:
 - pick the merge that gives a maximum value for Quality(C).
 - We're now back to m clusters
- Carry out (m 1) final merges, to create a full hierarchy

A Second Algorithm

• Running time: $O(|V|m^2 + n)$ where n is corpus length





More Information on Implementation

Video

https://www.youtube.com/playlist?list=PLO9y7hOkmmSEAqCc0wrNBrsoJMTmlN98M

• And an application for Named Entity Recognition (NER)