CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Parts of Speech

- Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of speech (POS)
 - a.k.a lexical categories, word classes, "tags"
- Lowest level of syntactic analysis

English Parts of Speech (POS) Tagsets

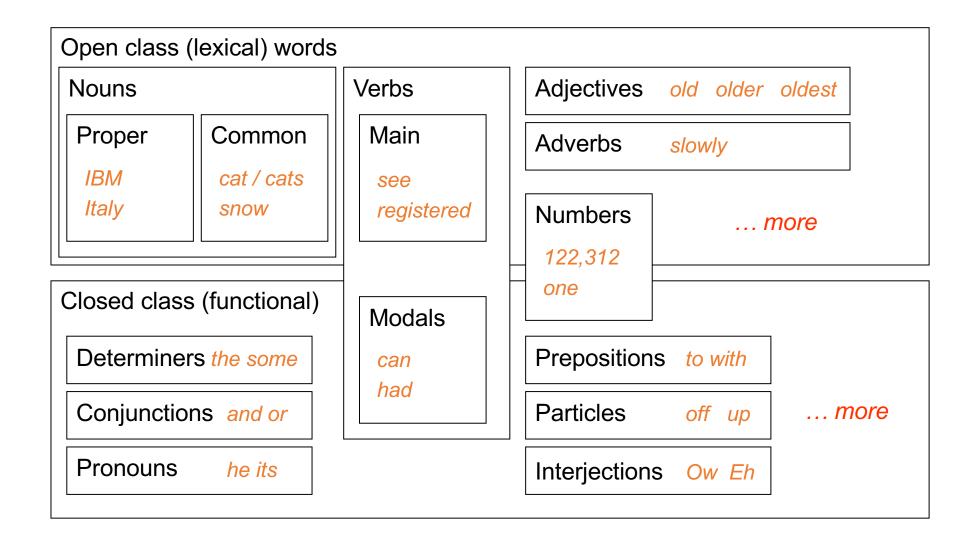
- Original Brown corpus used a large set of 87 POS tags.
- Most common in NLP today is the Penn Treebank set of 45 tags.
 - Tagset used in the slides.
 - Reduced from the Brown set for use in the context of a parsed corpus (i.e. Penn Treebank).

English Parts of Speech

- Noun (person, place or thing)
 - Singular (NN): dog, fork
 - Plural (NNS): dogs, forks
 - Proper (NNP, NNPS): John, Springfields
 - Personal pronoun (PRP): I, you, he, she, it
 - Wh-pronoun (WP): who, what
- Verb (actions and processes)
 - Base, infinitive (VB): eat
 - Past tense (VBD): ate
 - Gerund (VBG): eating
 - Past participle (VBN): eaten
 - Non 3rd person singular present tense (VBP): eat
 - 3rd person singular present tense: (VBZ): eats
 - Modal (MD): should, can
 - To (TO): to (to eat)

English Parts of Speech (cont.)

- Adjective (modify nouns)
 - Basic (JJ): red, tall
 - Comparative (JJR): redder, taller
 - Superlative (JJS): reddest, tallest
- Adverb (modify verbs)
 - Basic (RB): quickly
 - Comparative (RBR): quicker
 - Superlative (RBS): quickest
- Preposition (IN): on, in, by, to, with
- Determiner:
 - Basic (DT) a, an, the
 - WH-determiner (WDT): which, that
- Coordinating Conjunction (CC): and, but, or,
- Particle (RP): off (took off), up (put up)



Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: *a, an, the*
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
 - Why "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Ambiguity in POS Tagging

- "Like" can be a verb or a preposition
 - I like/VBP candy.
 - Time flies like/IN an arrow.
- "Around" can be a preposition, particle, or adverb
 - I bought it at the shop around/IN the corner.
 - I never got around/RP to getting a car.
 - A new Prius costs around/RB \$25K.

POS Tagging

• The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

NN*: noun VB*: verb

UH: interjection

JJ: adjective

RB: adverb

IN: preposition/subordinating conjunction

Input: plays well with others

Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

Output: Plays/VBZ well/RB with/IN others/NNS

• Uses:

- Text-to-speech (how do we pronounce "lead"?)
- Can write regexps over the output for phrase extraction
 - Noun phrase: (Det) Adj* N+
- As input to or to speed up a full parser

POS tagging performance

- How many tags are correct? (Tag accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Take an annotated corpus (or a dictionary), tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (the, a, etc.) and for punctuation marks!

How difficult is POS tagging?

- Word types: roughly speaking, unique words
- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know *that* he is honest = IN (preposition)
 - Yes, that play was nice = DT (determiner)
 - You can't go that far = RB (adverb)
- 40% of the word tokens are ambiguous

Sources of information

- What are the main sources of information for POS tagging?
 - Contextual: Knowledge of neighboring words
 - Bill saw that man yesterday
 - NNP NN DT NN NN
 - VB VB(D) IN VB NN
 - Local: Knowledge of word probabilities
 - man is rarely used as a verb....
- The latter proves the most useful, but the former also helps
- Sometimes these preferences are in conflict:
 - The trash can is in the garage

More and Better Features Feature-based tagger

- Can do surprisingly well just looking at a word by itself:
 - Word the: the \rightarrow DT
 - Lowercased word Importantly: importantly → RB
 - Prefixes unfathomable: un- \rightarrow JJ
 - Suffixes Importantly: $-ly \rightarrow RB$
 - Capitalization Meridian: $CAP \rightarrow NNP$
 - Word shapes 35-year: $d-x \rightarrow JJ$

POS Tagging Approaches

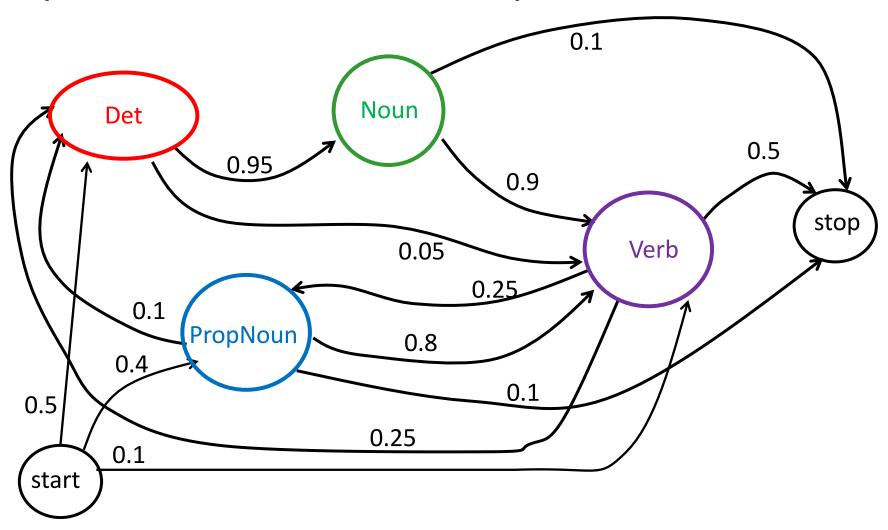
- Rule-Based: Human crafted rules based on lexical and other linguistic knowledge.
- Learning-Based: Trained on human annotated corporal like the Penn Treebank.
 - Statistical models: Hidden Markov Model (HMM) this lecture!, Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF)
 - Rule learning: Transformation Based Learning (TBL)
 - Neural networks: Recurrent networks like Long Short Term Memory (LSTMs)
- Generally, learning-based approaches have been found to be more effective overall, taking into account the total amount of human expertise and effort involved.

Hidden Markov Model

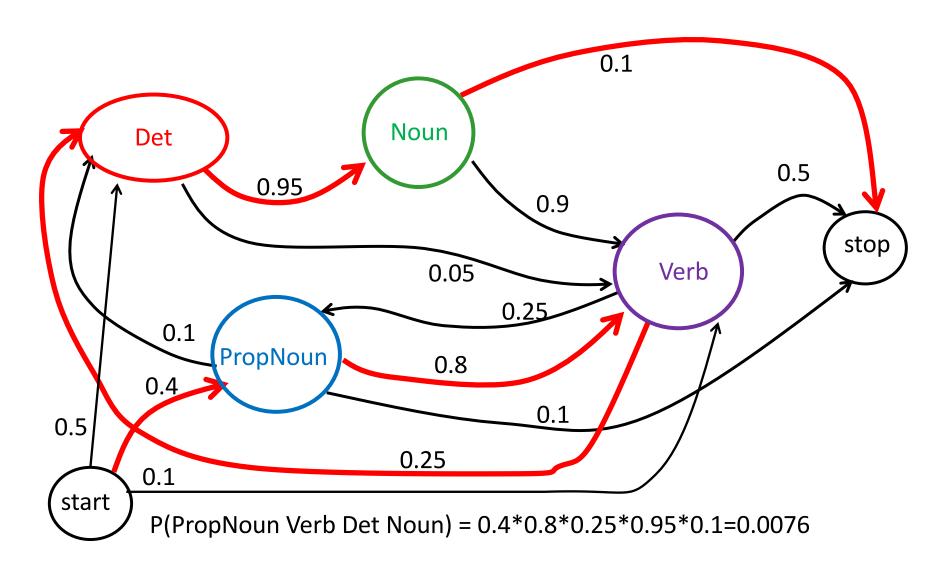
Markov Model / Markov Chain

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

Sample Markov Model for POS (a finite state machine)



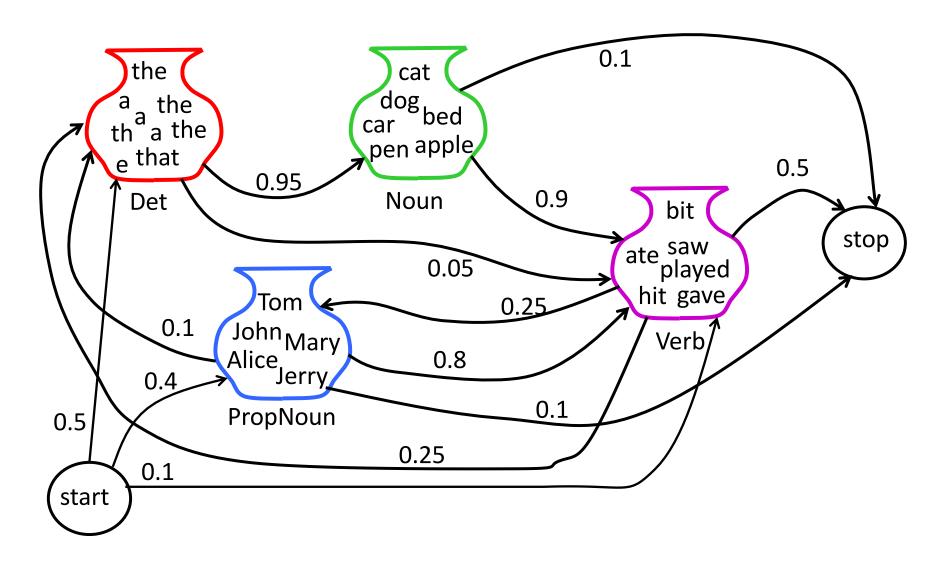
Sample Markov Model for POS

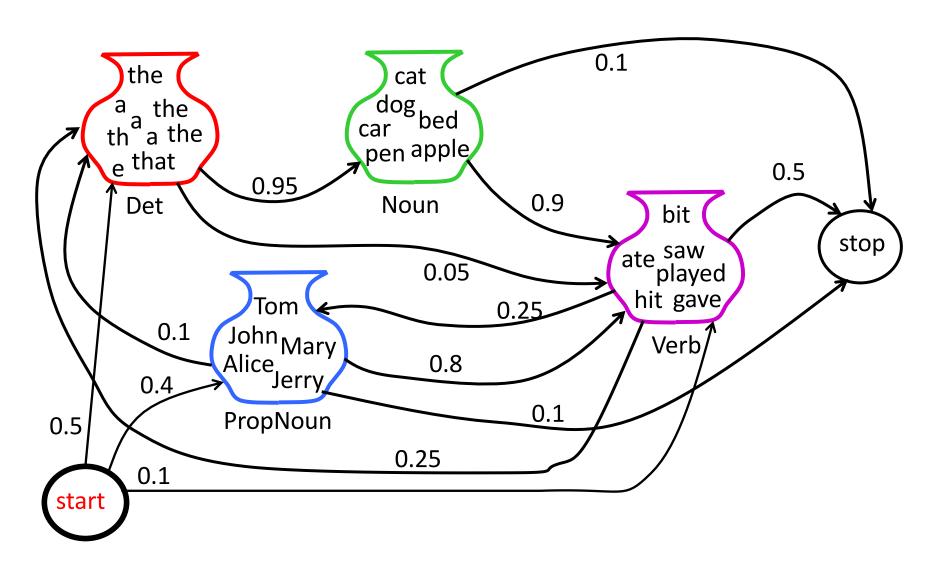


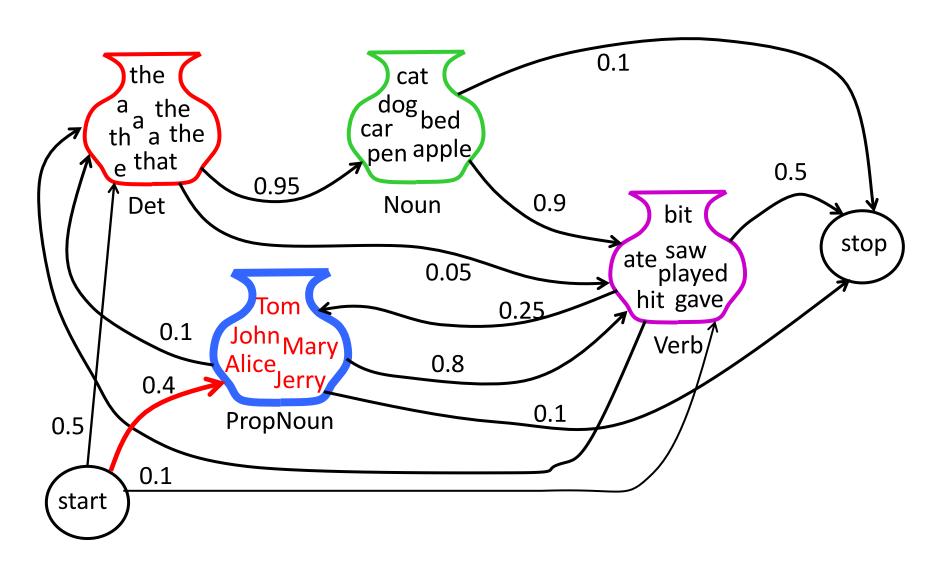
Hidden Markov Model

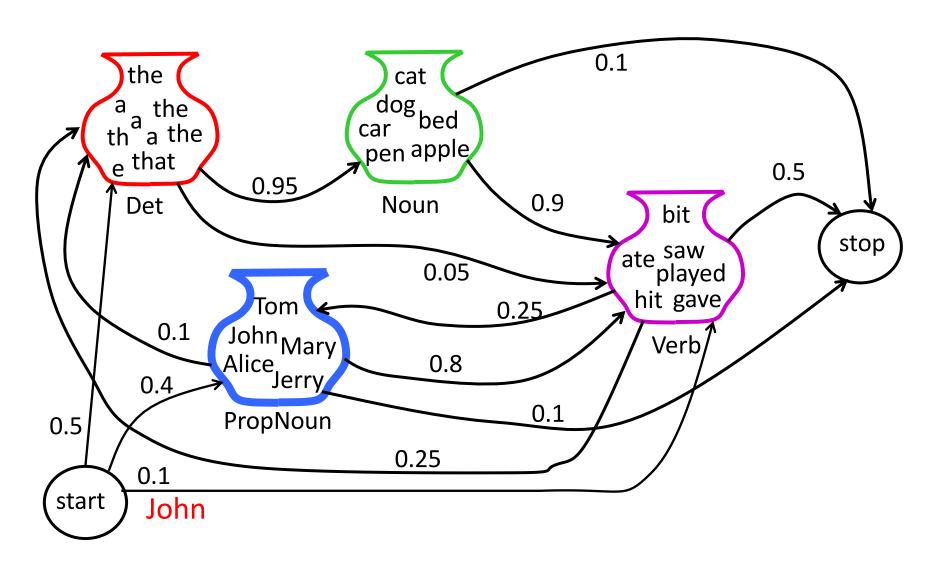
- Probabilistic generative model for sequences.
- Assume an underlying set of *hidden* (unobserved) states in which the model can be (e.g. part-of-speech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a *probabilistic* generation of tokens from states (e.g. words generated for each POS).

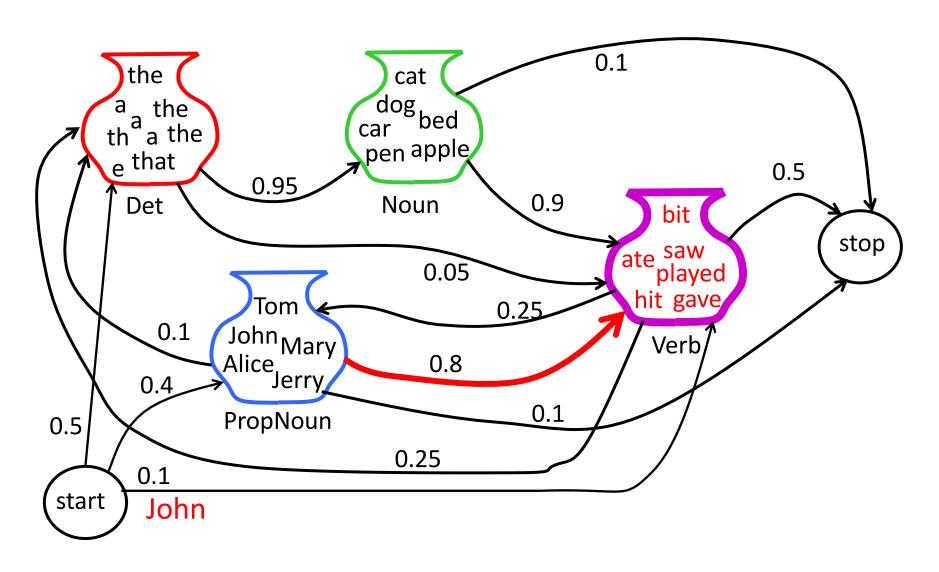
Sample HMM for POS

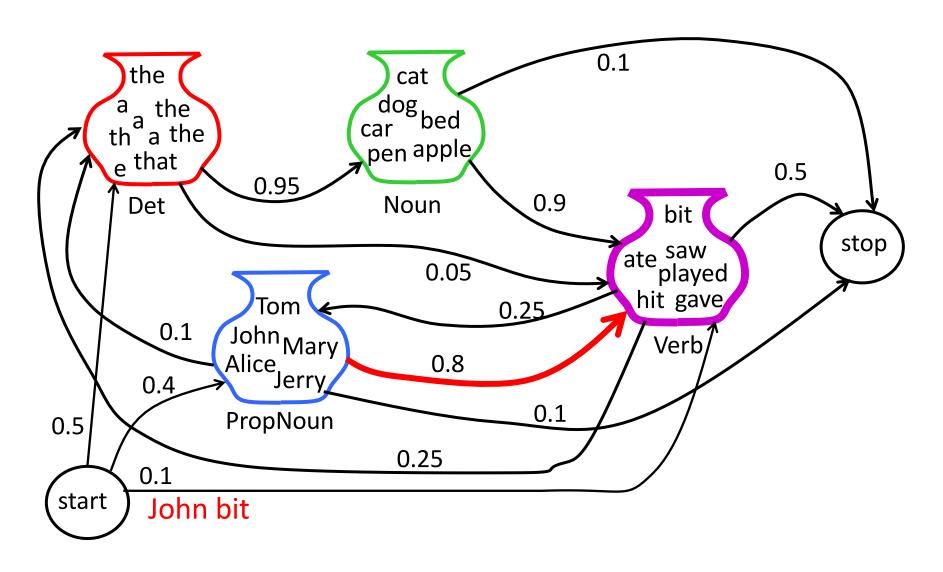


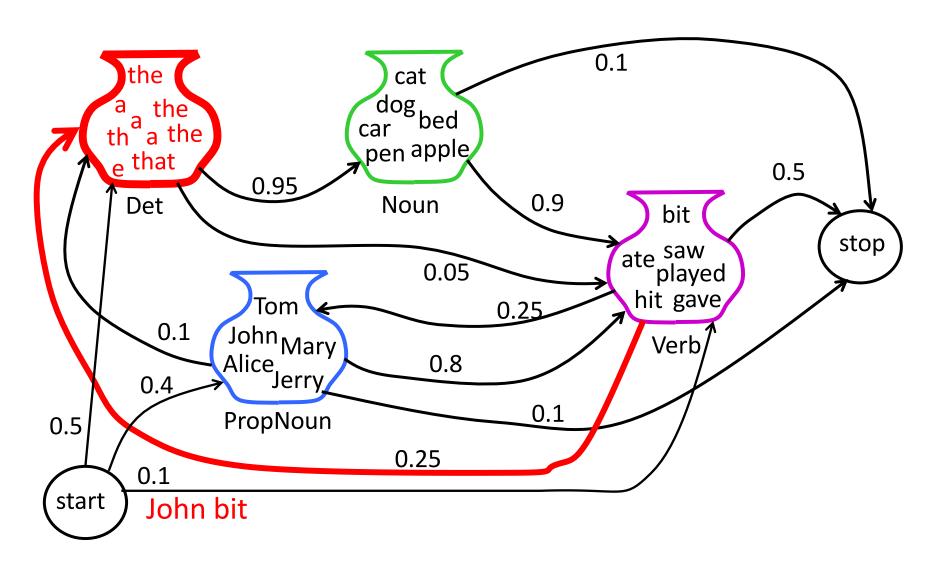


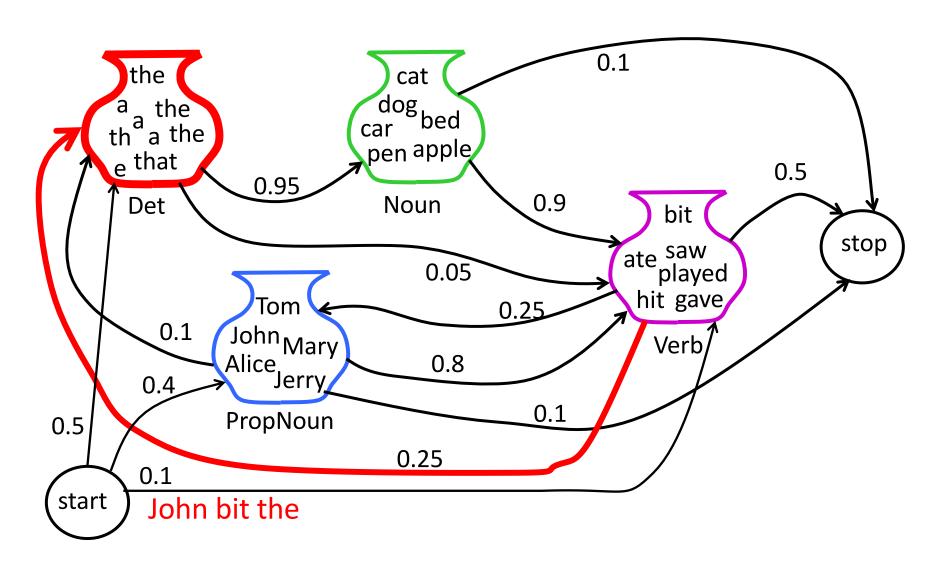


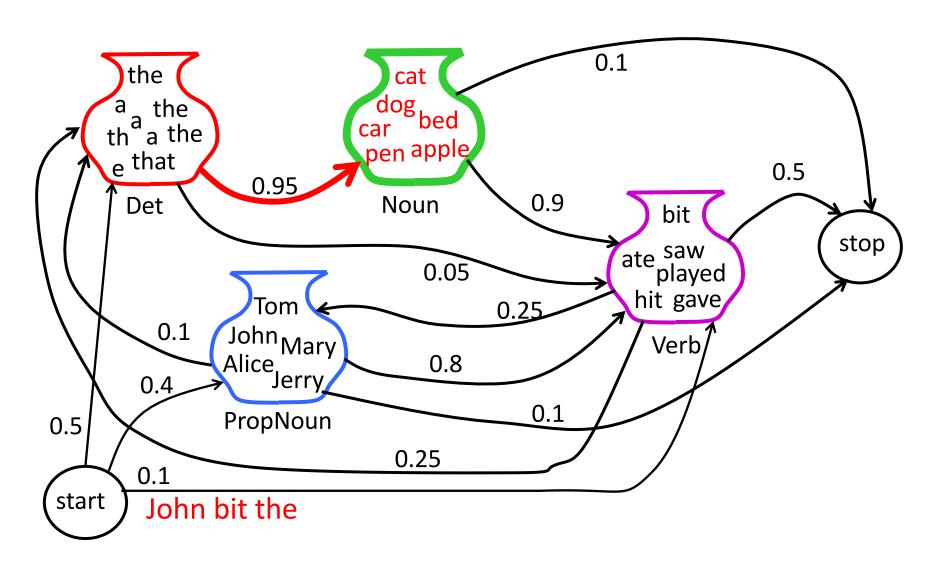


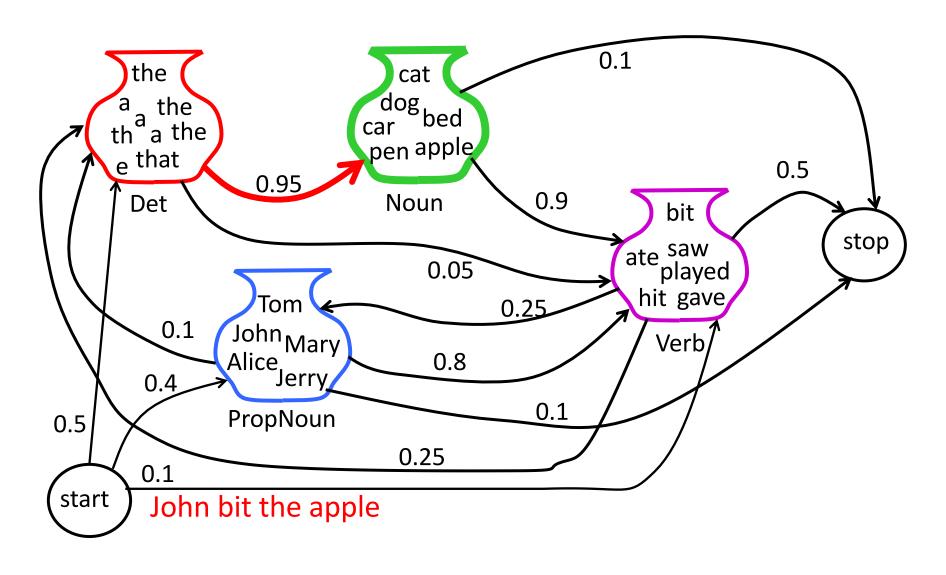


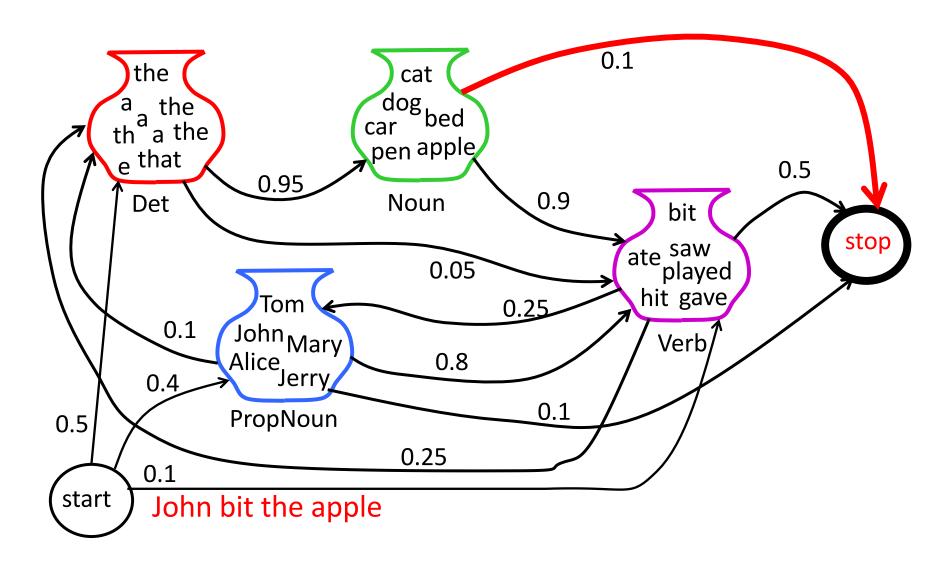












Formally, Markov Sequences

- ▶ Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence
- ▶ Each variable X_i can take any value in $\{1, 2, ..., k\}$
- How do we model the joint distribution

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$

The Markov Assumption

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$

$$= P(X_1 = x_1) \prod_{j=2}^m P(X_j = x_j | X_1 = x_1, \dots, X_{j-1} = x_{j-1})$$

$$= P(X_1 = x_1) \prod_{j=2}^m P(X_j = x_j | X_{j-1} = x_{j-1})$$

- The first equality is exact (by the chain rule).
- ▶ The second equality follows from the Markov assumption: for all $j = 2 \dots m$,

$$P(X_j = x_j | X_1 = x_1, \dots, X_{j-1} = x_{j-1}) = P(X_j = x_j | X_{j-1} = x_{j-1})$$

Homogeneous Markov Chains

In a homogeneous Markov chain, we make an additional assumption, that for $j=2\ldots m$,

$$P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1})$$

where q(x'|x) is some function

Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)

Markov Models

Our model is then as follows:

$$p(x_1, x_2, \dots x_m; \underline{\theta}) = q(x_1) \prod_{j=2}^m q(x_j | x_{j-1})$$

- Parameters in the model:
 - ▶ q(x) for $x = \{1, 2, ..., k\}$ Constraints: $q(x) \ge 0$ and $\sum_{x=1}^k q(x) = 1$
 - ▶ q(x'|x) for $x = \{1, 2, ..., k\}$ and $x' = \{1, 2, ..., k\}$ Constraints: $q(x'|x) \ge 0$ and $\sum_{x'=1}^k q(x'|x) = 1$

Probabilistic Models for Sequence Pairs

We have two sequences of random variables:

$$X_1, X_2, \ldots, X_m$$
 and S_1, S_2, \ldots, S_m

- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, ..., k\}$, and each X_i is in $\{1, 2, ..., o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

Probabilistic Models for Sequence Pairs

We have two sequences of random variables:

$$X_1, X_2, \ldots, X_m$$
 and S_1, S_2, \ldots, S_m

Words Part-of-Speech tags

- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, ..., k\}$, and each X_i is in $\{1, 2, ..., o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

Firstly, why would we want to model the joint distribution?

$$P(X_1 = x_1, ..., X_m = x_m, S_1 = s_1, ..., S_m = s_m)$$

Words Part-of-Speech tags

Supervised Learning Problems

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.
- ightharpoonup Task is to learn a function f mapping inputs x to labels f(x)

Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).
- Generative models:
 - Learn a distribution p(x,y) from training examples
 - ▶ Often we have p(x,y) = p(y)p(x|y)
- Note: we then have

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

where
$$p(x) = \sum_{y} p(y)p(x|y)$$

Prediction with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).
- Generative models:
 - Learn a distribution p(x,y) from training examples
 - Often we have p(x,y) = p(y)p(x|y)
- Output from the model:

$$f(x) = \arg \max_{y} p(y|x)$$

$$= \arg \max_{y} \frac{p(y)p(x|y)}{p(x)}$$

$$= \arg \max_{y} p(y)p(x|y)$$

Probabilistic Models for Sequence Pairs

We have two sequences of random variables:

$$X_1, X_2, \ldots, X_m$$
 and S_1, S_2, \ldots, S_m

Words Part-of-Speech tags

- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, ..., k\}$, and each X_i is in $\{1, 2, ..., o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

Hidden Markov Models (HMMs)

▶ In HMMs, we assume that:

Words

Part-of-Speech tags

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

$$= P(S_1 = s_1) \prod_{j=2}^m P(S_j = s_j | S_{j-1} = s_{j-1}) \prod_{j=1}^m P(X_j = x_j | S_j = s_j)$$

Independence Assumptions in HMMs

By the chain rule, the following equality is exact:

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

$$= P(S_1 = s_1, \dots, S_m = s_m) \times P(X_1 = x_1, \dots, X_m = x_m | S_1 = s_1, \dots, S_m = s_m)$$

Assumption 1: the state sequence forms a Markov chain

e.g. Part-of-Speech tags

$$P(S_1 = s_1, \dots, S_m = s_m) = P(S_1 = s_1) \prod_{j=2}^m P(S_j = s_j | S_{j-1} = s_{j-1})$$

By the chain rule, the following equality is exact:

$$P(X_1 = x_1, \dots, X_m = x_m | S_1 = s_1, \dots, S_m = s_m)$$

$$= \prod_{j=1}^m P(X_j = x_j | S_1 = s_1, \dots, S_m = s_m, X_1 = x_1, \dots, X_{j-1} = x_j)$$

 Assumption 2: each observation depends only on the underlying state

$$P(X_j = x_j | S_1 = s_1, \dots, S_m = s_m, X_1 = x_1, \dots X_{j-1} = x_j)$$

= $P(X_j = x_j | S_j = s_j)$

Formally

The model takes the following form:

$$p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta}) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

- Parameters in the model:
 - 1. Initial state parameters t(s) for $s \in \{1, 2, \dots, k\}$
 - 2. Transition parameters t(s'|s) for $s, s' \in \{1, 2, \dots, k\}$
 - 3. Emission parameters e(x|s) for $s \in \{1, 2, ..., k\}$ and $x \in \{1, 2, ..., o\}$

HMM

- Parameter estimation
 - Learning the probabilities from training data
 - P(verb|noun)?, P(apple|noun)?
- Inference: Viterbi algorithm (dynamic programming)
 - Given a new sentence, what are the POS tags for the words?

HMM

Parameter estimation

• Inference: Viterbi algorithm (dynamic programming)

Parameter Estimation with Fully Observed Data

We'll now discuss parameter estimates in the case of *fully* observed data: for $i=1\ldots n$, we have pairs of sequences $x_{i,j}$ for $j=1\ldots m$ and $s_{i,j}$ for $j=1\ldots m$. (i.e., we have n training examples, each of length m.)

Parameter Estimation: Transition Parameters

• P(verb|noun)?

- Assume we have fully observed data: for $i=1\ldots n$, we have pairs of sequences $x_{i,j}$ for $j=1\ldots m$ and $s_{i,j}$ for $j=1\ldots m$
- ▶ Define count $(i, s \rightarrow s')$ to be the number of times state s' follows state s in the i'th training example. More formally:

$$count(i, s \to s') = \sum_{j=1}^{m-1} [[s_{i,j} = s \land s_{i,j+1} = s']]$$

(We define $[[\pi]]$ to be 1 if π is true, 0 otherwise.)

 The maximum-likelihood estimates of transition probabilities are then

$$t(s'|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \to s')}{\sum_{i=1}^{n} \sum_{s'} \operatorname{count}(i, s \to s')}$$

Parameter Estimation: Emission Parameters

P(apple | noun)?

- Assume we have fully observed data: for $i=1\ldots n$, we have pairs of sequences $x_{i,j}$ for $j=1\ldots m$ and $s_{i,j}$ for $j=1\ldots m$
- ▶ Define count $(i, s \leadsto x)$ to be the number of times state s is paired with emission x. More formally:

$$\operatorname{count}(i, s \leadsto x) = \sum_{j=1}^{m} [[s_{i,j} = s \land x_{i,j} = x]]$$

The maximum-likelihood estimates of emission probabilities are then

$$e(x|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \leadsto x)}{\sum_{i=1}^{n} \sum_{x} \operatorname{count}(i, s \leadsto x)}$$

Parameter Estimation: Initial State Parameters

- Assume we have fully observed data: for $i=1\ldots n$, we have pairs of sequences $x_{i,j}$ for $j=1\ldots m$ and $s_{i,j}$ for $j=1\ldots m$
- ▶ Define count(i, s) to be 1 if state s is the initial state in the sequence, and 0 otherwise:

$$count(i, s) = [[s_{i,1} = s]]$$

The maximum-likelihood estimates of initial state probabilities are:

$$t(s) = \frac{\sum_{i=1}^{n} \mathsf{count}(i, s)}{n}$$

HMM

Parameter estimation

• Inference: Viterbi algorithm (dynamic programming)

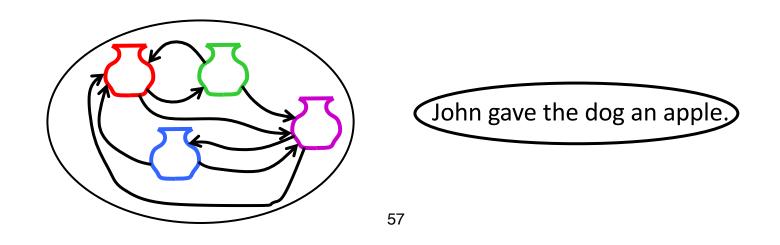
The Viterbi Algorithm

▶ Goal: for a given input sequence x_1, \ldots, x_m , find

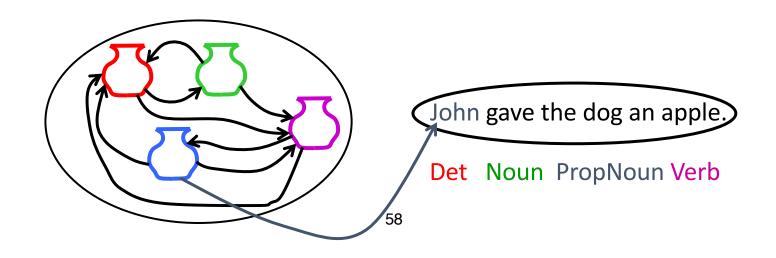
$$\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m,s_1\ldots s_m;\underline{\theta})$$

▶ This is the most likely state sequence $s_1 \dots s_m$ for the given input sequence $x_1 \dots x_m$

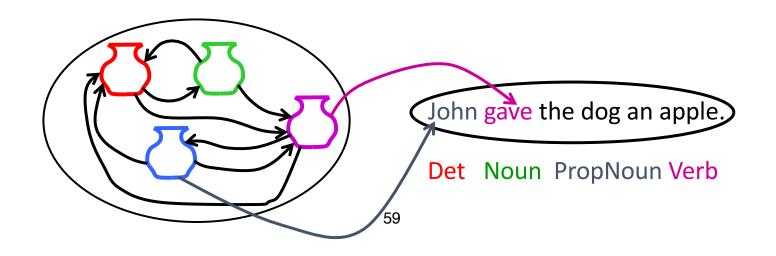
- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



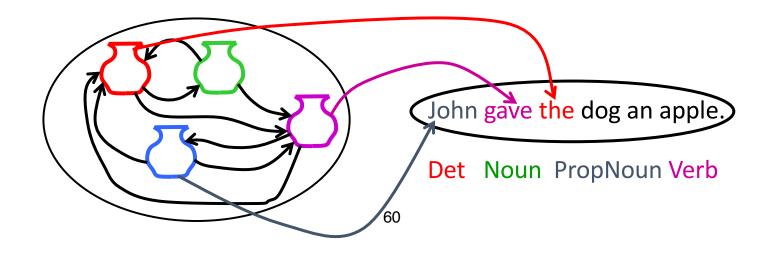
- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



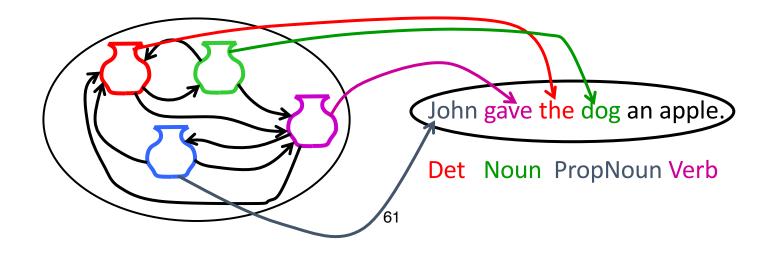
- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



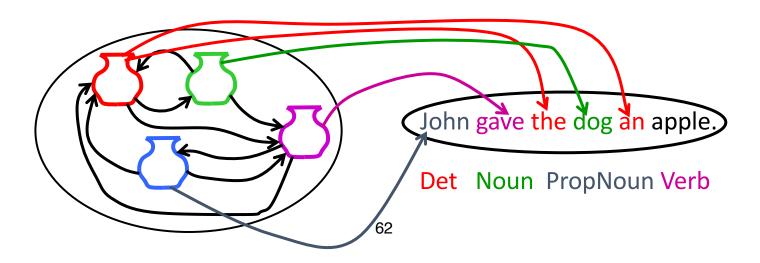
- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



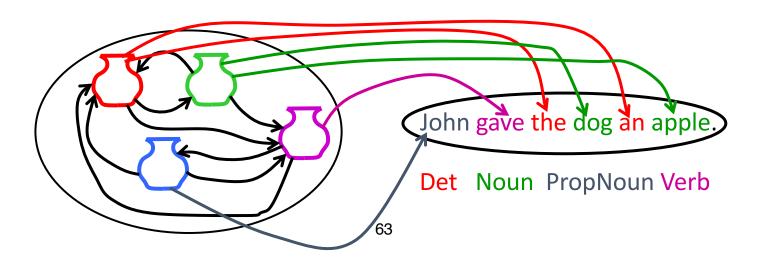
- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



- Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...s_m$, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



All possible states (e.g., pos tags)



- Continue forward in time until reaching final time point.
- The goal: find a path with highest probability

The Viterbi Algorithm

▶ Goal: for a given input sequence x_1, \ldots, x_m , find

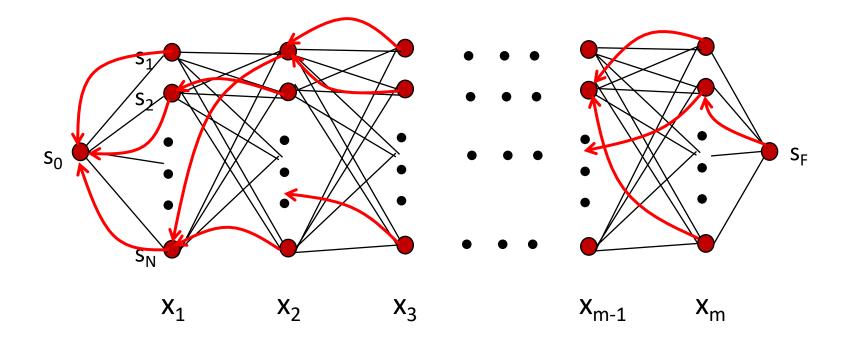
$$\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m,s_1\ldots s_m;\underline{\theta})$$

The Viterbi algorithm is a dynamic programming algorithm. Basic data structure:

$$\pi[j,s]$$

will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally: $\pi[1,s]=t(s)e(x_1|s)$, and for j>1, Emission from

$$\pi[j,s] = \max_{s_1...s_{j-1}} \left[t(s_1)e(x_1|s_1) \left(\prod_{k=2}^{j-1} t(s_k|s_{k-1})e(x_k|s_k) \right) t(s|s_{j-1})e(x_j|s) \right]$$



The Viterbi Algorithm

▶ Initialization: for $s = 1 \dots k$

$$\pi[1,s] = t(s)e(x_1|s)$$

▶ For j = 2 ... m, s = 1 ... k:

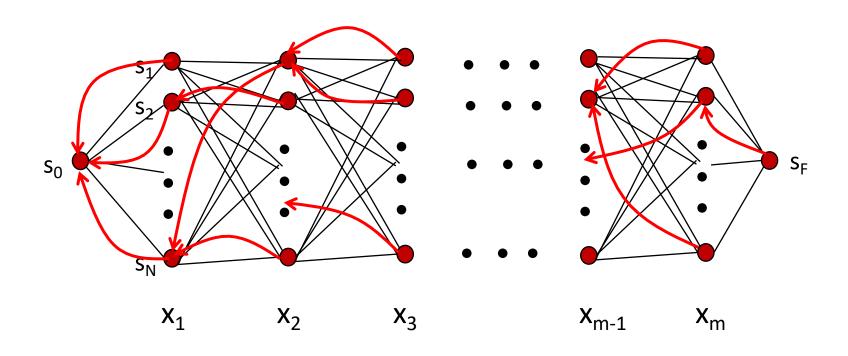
$$\pi[j, s] = \max_{s' \in \{1...k\}} \left[\pi[j - 1, s'] \times t(s|s') \times e(x_j|s) \right]$$

We then have

$$\max_{s_1...s_m} p(x_1...x_m, s_1...s_m; \underline{\theta}) = \max_s \pi[m, s]$$

▶ The algorithm runs in $O(mk^2)$ time

Viterbi Backpointers



Viterbi Backtrace



Most likely Sequence: $s_0 s_N s_1 s_2 ... s_2 s_F$

The Viterbi Algorithm: Backpointers

▶ Initialization: for $s = 1 \dots k$

$$\pi[1,s] = t(s)e(x_1|s)$$

▶ For j = 2 ... m, s = 1 ... k:

$$\pi[j, s] = \max_{s' \in \{1...k\}} \left[\pi[j - 1, s'] \times t(s|s') \times e(x_j|s) \right]$$

and

$$bp[j, s] = \arg\max_{s' \in \{1...k\}} [\pi[j-1, s'] \times t(s|s') \times e(x_j|s)]$$

► The bp entries are backpointers that will allow us to recover the identity of the highest probability state sequence Highest probability for any sequence of states is

$$\max_{s} \pi[m, s]$$

► To recover identity of highest-probability sequence:

$$s_m = \arg\max_s \pi[m, s]$$

and for $j = m \dots 2$,

$$s_{j-1} = bp[j, s_j]$$

▶ The sequence of states $s_1 \dots s_m$ is then

$$\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m,s_1\ldots s_m;\underline{\theta})$$

Homework

- Reading J&M ch5&6
- Reading ch6 at https://web.stanford.edu/~jurafsky/slp3/6.pdf
- HMM notes
 - http://www.cs.columbia.edu/~mcollins/hmmsspring2013.pdf
- Assignment 1 is out. Due Feb 6.
- Start thinking about course project and find a team.