CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

Logistics

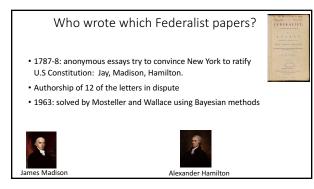
- Assignment 1 will be released by the end of 1/16!
- It's due on 2/6.
- You have three weeks, but start early!
- Team matching!
- Feel free to post on Piazza, or talk to your peers after class.

Outline

- Text Categorization/Classification
- Naïve Bayes
- Evaluation

Positive or negative movie review?

- unbelievably disappointing ŧ?
- Full of zany characters and richly applied satire, and some great plot twists twists
- ${}^{\scriptsize{\scriptsize{\textcircled{}}}}$ this is the greatest screwball comedy ever filmed



Male or female author?

- 1. By 1925 present-day Vietnam was divided into three parts under French colonial rule. The southern region embracing Saigon and the Mekong delta was the colony of Cochin-China; the central area with its imperial capital at Hue was the protectorate of Annam...
- 2. Clara never failed to be astonished by the extraordinary felicity of her own name. She found it hard to trust herself to the mercy of fate, which had managed over the years to convert her greatest shame into one of her greatest assets...

Argamon, M. Koppel, J. Fine, A. R. Shimoni, 2003. "Gender, Genre, and Writing Style in Formal Written Texts," Text, volume 23, number 3, pp 1–346

Text Classification

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis
- •...

Text Classification: definition

•Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- Output: a predicted class $c \in C$

Classification Methods: Hand-coded rules

- Rules based on combinations of words or other features
 spam: black-list-address OR ("dollars" AND "have been selected")
- Accuracy can be high
 If rules carefully refined by expert
- But building and maintaining these rules is expensive

Classification Methods: Supervised Machine Learning

- Input:
- a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_j\}$
 - A training set of *m* hand-labeled documents $(d_{1}, c_{1}), ..., (d_{m}, c_{m})$
- Output:
- a learned classifier $\gamma: d \rightarrow c$

Classification Methods: Supervised Machine Learning

• Any kind of classifier

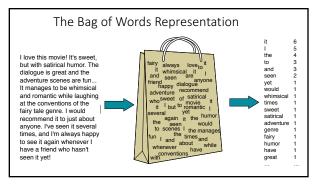
- Naïve Bayes
- Logistic regression
- Support-vector machines
- k-Nearest Neighbors

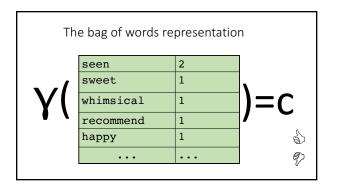
• ...

Naïve Bayes Classifier

Naïve Bayes Intuition

- Simple ("naïve") classification method based on Bayes rule
- Relies on very simple representation of document • Bag of words

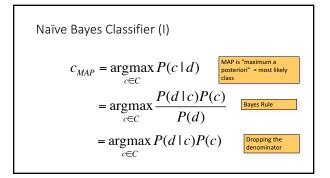


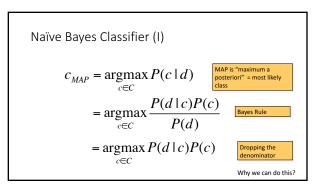


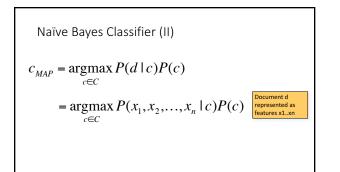
Bayes' Rule Applied to Documents and Classes

• For a document *d* and a class *C*

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$







Naïve Bayes Classifier (IV)	
$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n)$	c)P(c)
O(X ⁿ • C) parameters	How often does this class occur?
Could only be estimated if a very, very large number of training examples was available.	We can just count the relative frequencies in a
	corpus

$$P(x_1, x_2, ..., x_n | c)$$

- Bag of Words assumption: Assume position doesn't matter
- Conditional Independence: Assume the feature probabilities $P(x_i | c_j)$ are independent given the class *c*.

 $P(x_1,...,x_n \mid c) = P(x_1 \mid c) \bullet P(x_2 \mid c) \bullet P(x_3 \mid c) \bullet ... \bullet P(x_n \mid c)$

Multinomial Naïve Bayes Classifier

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

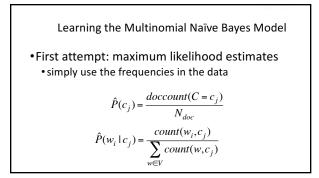
$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c)$$

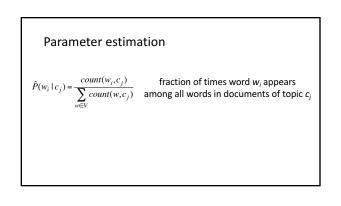
Applying Multinomial Naive Bayes Classifiers to Text Classification

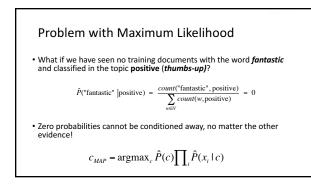
 $positions \leftarrow all word positions in test document$

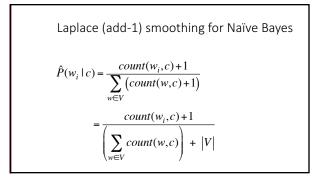
$$c_{\scriptscriptstyle NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{i \in positions} P(x_i \mid c_j)$$

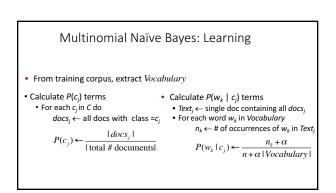
Learning for Naïve Bayes Model

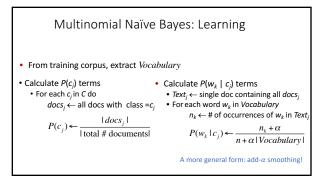












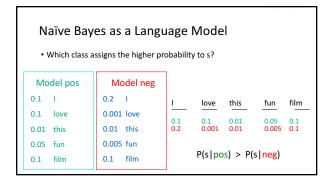
Naïve Bayes and Language Modeling

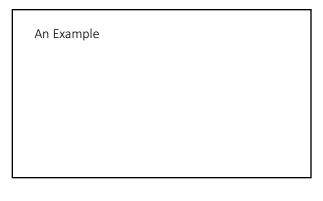
- Naïve bayes classifiers can use any sort of feature • URL, email address, dictionaries, network features
- But if, as in the previous slides
 We use only word features
 - we use **all** of the words in the text (not a subset)

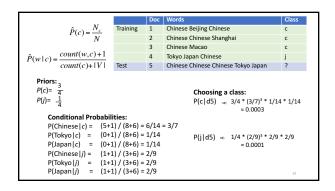
Then

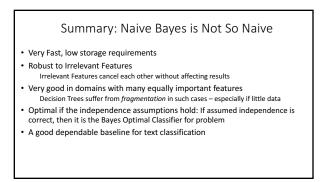
Naïve bayes has an important similarity to language modeling.

Ea	ch class = a	unigra	m lan	guag	e mod	lel
	ssigning each word ssigning each sente	• •		ord c)		
Clas	s pos					
0.1	1	I	love	this	fun	film
0.1	love	0.1	0.1	.05	0.01	0.1
0.01	this	0.1	0.1	.05	0.01	0.1
0.05	fun					
0.1	film			Р	(s pos) = 0.0000005









Evaluation

The 2-by-2 contingency table

	correct	not correct
selected	tp (true positive)	fp (false positive)
not selected	fn (false negative)	tn (true negative)

Precision and recall

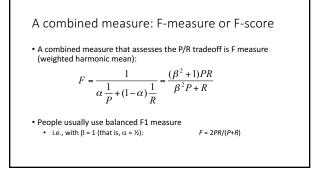
For example,
 Which set of documents are related to NLP?
 Which set of documents are written by Shakespeare?

The 2-by-2 contingency table

	correct	not correct
selected	tp	fp
not selected	fn	tn

• Precision: % of selected items that are correct, tp/(tp+fp)
Recall: % of correct items that are selected, tp/(tp+fn)

	correct	not correct
selected	tp	fp
not selected	fn	tn



Text Classification Evaluation

More Than Two Classes: Sets of binary classifiers

- Dealing with any-of or multivalue classification • A document can belong to 0, 1, or >1 classes.
- For each class c∈C
- Build a classifier γ_c to distinguish c from all other classes c' \in C • Given test doc d.
- Evaluate it for membership in each class using each y_c
- d belongs to any class for which γ_c returns true

More Than Two Classes: Sets of binary classifiers

One-of or multinomial classification
 Classes are mutually exclusive: each document in exactly one class

For each class c∈C

- • Build a classifier γ_c to distinguish c from all other classes $c' \in C$ • Given test doc d,
- Evaluate it for membership in each class using each γ_c
- d belongs to the one class with maximum score

Confusion matrix c

- For each pair of classes $<\!c_1,\!c_2\!>$ how many documents from c_1 were incorrectly assigned to $c_2?$

• c_{3,2}: 90 wheat documents incorrectly assigned to poultry

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

Per class evaluation measuresRecall:
Fraction of docs in class *i* classified correctly: $\sum_{j}^{c_{ii}} c_{ij}$ Precision:
actually about class *i*: $\sum_{j}^{c_{ii}} c_{ji}$ Accuracy:
Fraction of docs classified correctly: $\sum_{j}^{c_{ii}} c_{ji}$ Accuracy:
Fraction of docs classified correctly: $\sum_{j}^{c_{ii}} c_{ij}$

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

Clas	s 1		Class 2 Mic				Micro A	o Ave. Table		
	Truth: ves	Truth: no			Truth: yes	Truth: no			Truth: yes	Truth: no
Classifier: yes	10	10	1	Classifier: yes	90	10		Classifier: yes	100	20
Classifier: no	10	970		Classifier: no	10	890		Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83

0.000 1
Truth: yes
Classifier: yes 10
Classifier: no 10

