CS 6120/CS4120: Natural Language Processing
Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage:www.ccs.neu.edu/home/luwang

Logistics

- Progress report comments and grades will be released by the end of today (3/30)
- Comments and grades for assignment 2 will be released by the end of this week.

Logistics

- Project presentation
- 10 minutes for talk
- 2 minutes for $Q A$ (anyone can ask questions)
- Project progress feedback
- 3:25pm-6:15pm in 258 WVH
- You can claim a time slot on piazza, or just stop by!

Machine Translation

- Automatically translate one natural language into another.

Mary didn't slap the green witch.
万
Maria no dió una bofetada a la bruja verde.
(Mary do not gave a slap to the witch green.)
[Some slides are borrowed from Raymond Mooney, Kevin Knight, and Alan Ritter]

Word Alignment

- Shows mapping between words in one language and the other.

Translation Quality

- Achieving literary quality translation is very difficult.
- Existing MT systems can generate rough translations that frequently at least convey the gist of a document.
- High quality translations possible when specialized to narrow domains, e.g. weather forecasts.
- Some MT systems used in computer-aided translation in which a bilingual human post-edits the output to produce

Ambiguity Resolution is Required for Translation

- Syntactic and semantic ambiguities must be properly resolved for correct translation:
- "John plays the guitar." \rightarrow "John toca la guitarra."
- "John plays soccer." \rightarrow "John juega el fútbol."
- An apocryphal story is that an early MT system gave the following results when translating from English to Russian and then back to English:
- "The spirit is willing but the flesh is weak." \Rightarrow "The liquor is good but the meat is spoiled.'
- "Out of sight, out of mind." \Rightarrow "Invisible idiot."

Issues: Lexical Gaps

- Some words in one language do not have a corresponding term in the other.
- Rivière (river that flows into ocean) and fleuve (river that does not flow into ocean) in French
- Schedenfraude (feeling good about another's pain) in German.
- Oyakoko (filial piety) in Japanese

Issues: Syntactic Structure is not Preserved Across Translations

The bottle floated into the cave
\Downarrow

Issues

- Linguistic Divergences
- Structural differences between languages
- Categorical Divergence

Translation of words in one language into words that have different parts of speech in another language

- To be
- Tener celos (To have jealousy)

La botella entro a la cuerva flotando (the bottle entered the cave floating)

Issues

- Linguistic Divergences
- Head-Swapping Divergence

Head-Swapping Divergence

- Inversion of a structural-dominance relation between two semantically equivalent words - To run in

Entrar corriendo (Enter running)

Direct Transfer

- Translation is word-by-word
- Very little analysis of the source text (e.g., no syntactic or semantic analysis)
- Relies on a large bilingual dictionary. For each word in the source language, the dictionary specifies a set of rules for translating that word

Direct Transfer

- Morphological Analysis

Mary didn't slap the green witch. \rightarrow Mary DO:PAST not slap the green witch.

- Lexical Transfer
- Mary DO:PAST not slap the green witch.

- Maria no dar:PAST una bofetada a la verde bruja.
- Lexical Reordering
- Maria no dar:PAST una bofetada a la bruja verde.

An Example of a set of Direct Translation Rules

Rules for translating much or many into Russian:
if preceding word is how return skol'ko
else if preceding word is as return stol'ko zhe
else if word is much
if preceding word is very return ni
else if following word is a noun return mnogo
else (word is many)
if preceding word is a preposition and following word is noun return mnogii else return mnogo
Morphological generation

- Maria no dió una bofetada a la bruja verde.

Transfer-Based Approaches

- Analysis: Analyze the source language sentence; for example, build a syntactic analysis of the source language sentence.
- Transfer: Convert the source-language parse tree to a target-language parse tree.
- Words are translated without disambiguation of their syntactic role
e.g., that can be a complementizer or determiner, and will often be translated differently for these two cases
- Generation: Convert the target-language parse tree to an output

They said that ..
They like that ice-cream sentence.

Syntactic Transfer

- Simple lexical reordering does not adequately handle more dramatic reordering such as that required to translate from an SVO to an SOV language.
- Need syntactic transfer rules that map parse tree for one language into one for another.
- English to Spanish:
- NP \rightarrow Adj Nom \Rightarrow NP \rightarrow Nom AD
- English to Japanese:
- $V P \rightarrow V N P \Rightarrow V P \rightarrow N P V$
- $\mathrm{PP} \rightarrow \mathrm{PNP} \Rightarrow \mathrm{PP} \rightarrow \mathrm{NPP}$

\Rightarrow Japanese: Sources yesterday IBM Lotus bought that said

Statistical MT

 rules is difficult. languages.- Manually encoding comprehensive bilingual lexicons and transfer
- SMT acquires knowledge needed for translation from a parallel corpus or bitext that contains the same set of documents in two
- The Canadian Hansards (parliamentary proceedings in French and English) is a well-known parallel corpus.
- First align the sentences in the corpus based on simple methods that use coarse cues like sentence length to give bilingual sentence pairs.

Noisy Channel Model

- Assume that source sentence was generated by a "noisy" transformation of some target language sentence and then use Bayesian analysis to recover the most likely target sentence that generated it.

Translate foreign language sentence $F=f_{1}, f_{2}, \ldots f_{m}$ to an English sentence $\hat{E}=e_{1}, e_{2}, \ldots e_{I}$ that maximizes $\mathrm{P}(E \mid F)$

$$
T_{\text {best }}=\underset{T \in \text { Target }}{\operatorname{argmax}} \text { faithfulness }(T, S) \text { fluency }(T)
$$

Bayesian Analysis of Noisy Channel

$$
\begin{aligned}
\hat{E} & =\underset{E \in \text { English }}{\operatorname{argmax}} P(E \mid F) \\
& =\underset{E \in \text { English }}{\operatorname{argmax}} \frac{P(F \mid E) P(E)}{P(F)} \\
& =\underset{E \in \text { English }}{\operatorname{argmax}} P(F \mid E) P(E) \\
& \text { Translation Model Language Model }
\end{aligned}
$$

A decoder determines the most probable translation \hat{E} given F

Translation from Spanish to English, candidate translations based on p (Spanish \mid English) alone:

Que hambre tengo yo
\rightarrow
What hunger have $\quad p(s \mid e)=0.000014$
Hungry I am so $\quad p(s \mid e)=0.000001$
I am so hungry $\quad p(s \mid e)=0.0000015$
Have i that hunger $p(s \mid e)=0.000020$

With $p($ Spanish \mid English $) \times p($ English $):$	
Que hambre tengo yo	
\rightarrow	
What hunger have	$p(s \mid e) p(e)=0.000014 \times 0.000001$
Hungry I am so	$p(s \mid e) p(e)=0.000001 \times 0.0000014$
Iam so hungry	$p(s \mid e) p(e)=0.0000015 \times 0.0001$
Have i that hunger	$p(s \mid e) p(e)=0.000020 \times 0.00000098$

Evaluating MT

- Human subjective evaluation is the best but is time-consuming and expensive.
- Automated evaluation comparing the output to multiple human reference translations is cheaper and correlates with human judgements.

Human Evaluation of MT

- Ask humans to estimate MT output on several dimensions.
- Fluency: Is the result grammatical, understandable, and readable in the target language.
- Fidelity: Does the result correctly convey the information in the original source language.

Adequacy: Human judgment on a fixed scale

- Bilingual judges given source and target language.

Informativeness: Monolingual judges must answer questions about the source sentence given only the MT translation (task-based evaluation)

Computer-Aided Translation Evaluation

- Edit cost: Measure the number of changes that a human translator must make to correct the MT output.
- Number of words changed
- Amount of time taken to edit
- Number of keystrokes needed to edit

Automatic Evaluation of MT

- Collect one or more human reference translations of the source.

BLEU

- Determine number of n-grams of various sizes that the MT output shares with the reference translations.
- Compare MT output to these reference translations.
- Score result based on similarity to the reference translations.
- Compute a modified precision measure of the n-grams in MT result

BLEU Example

Cand 1: Mary no slap the witch green.
Cand 1: Mary no slap the witchgreen.
Cand 2: Mary did not give a smack to a green witch.
Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch Ref 3: Mary did not hit a green sorceress.

Cand 1 Bigram Precision: $1 / 5$

BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2: Mary did] not $[$ give \mid amack \mid to a green witch.
Ref 1: Mary did not slap the green witch
Ref 2: Mary did not smack the green witch
Ref 3: Mary did not hit a green sorceress.

Cand 2 Bigram Precision: 4/9

Modified N-Gram Precision

- Average n-gram precision over all n-grams up to

Brevity Penalty
size N (typically 4) using geometric mean.

- Not easy to compute recall to complement precision since there are multiple alternative gold-standard references and don't need to match all of them.

$$
p_{n}=\frac{\sum_{C \in c o r p u s \mathrm{n}} \sum_{\mathrm{n} \text {-gramm } C} \operatorname{count}_{\text {clip }}(\mathrm{n}-\text { gram })}{\sum_{C \in c o r p u s \mathrm{~s}} \sum_{\mathrm{n} \text {-gram } \in C} \operatorname{count}(\mathrm{n}-\mathrm{gram})} \quad p=\sqrt[N]{\prod_{n=1}^{N} p_{n}}
$$

- Instead, use a penalty for translations that are shorter than the reference translations.
- Define effective reference length, r, for each sentence as the length of the reference sentence with the largest number of n-gram matches. Let c be the candidate sentence length.

$$
\begin{aligned}
& \text { Cand 1: } p=\sqrt[2]{\frac{5}{6} \frac{1}{5}}=0.408 \\
& \text { Cand 2: } \\
& p=\sqrt[2]{\frac{7}{10} \frac{4}{9}}=0.558
\end{aligned}
$$

$$
B P= \begin{cases}1 & \text { if } c>r \\ e^{(1-r / c)} & \text { if } c \leq r\end{cases}
$$

BLEU Score Issues

- BLEU has been shown to correlate with human evaluation when comparing outputs from different SMT systems.
- However, it is does not correlate with human judgments when comparing SMT systems with manually developed MT (Systran) or MT with human translations.
- Other MT evaluation metrics have been proposed that claim to overcome some of the limitations of BLEU.

