CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Logistics

- Progress report comments and grades will be released by the end of today (3/30)
- Comments and grades for assignment 2 will be released by the end of this week.

Logistics

- Project presentation
 - 10 minutes for talk
 - 2 minutes for QA (anyone can ask questions)
- Project progress feedback
 - 3:25pm-6:15pm in 258 WVH
 - You can claim a time slot on piazza, or just stop by!

Machine Translation

• Automatically translate one natural language into another.

Mary didn't slap the green witch.

Maria no dió una bofetada a la bruja verde. (Mary do not gave a slap to the witch green.)

[Some slides are borrowed from Raymond Mooney, Kevin Knight, and Alan Ritter]

Word Alignment

 \bullet Shows mapping between words in one language and the other.

Mary didn't slap the green witch.

Maria no dió una botetada à la bruja verde.
(Mary do not gave a slap to the witch green.)

Translation Quality

- Achieving literary quality translation is very difficult.
- Existing MT systems can generate rough translations that frequently at least convey the gist of a document.
- High quality translations possible when specialized to narrow domains, e.g. weather forecasts.
- Some MT systems used in computer-aided translation in which a bilingual human post-edits the output to produce more readable accurate translations.

Ambiguity Resolution is Required for Translation

- Syntactic and semantic ambiguities must be properly resolved for correct translation:
 - "John plays the guitar." \Rightarrow "John toca la guitarra."
 - "John plays soccer." → "John juega el fútbol."
- An apocryphal story is that an early MT system gave the following results when translating from English to Russian and then back to English:
 - "The spirit is willing but the flesh is weak." \Rightarrow "The liquor is good but the meat is spoiled."
 - "Out of sight, out of mind." \Rightarrow "Invisible idiot."

Issues: Lexical Gaps

- Some words in one language do not have a corresponding term in the other
 - Rivière (river that flows into ocean) and fleuve (river that does not flow into ocean) in French
 - Schedenfraude (feeling good about another's pain) in German.
 - Oyakoko (filial piety) in Japanese

Issues: Differing Word Orders

- English word order is subject verb object (SVO)
- Japanese word order is subject object verb (SOV)

English: IBM bought Lotus Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday Japanese: Sources yesterday IBM Lotus bought that said

Issues: Syntactic Structure is not Preserved Across Translations

The bottle floated into the cave

La botella entro a la cuerva flotando (the bottle entered the cave floating)

Issues

- Linguistic Divergences
 - Structural differences between languages
 - Categorical Divergence
 - Translation of words in one language into words that have different parts of speech in another language
 - To be jealous
 - Tener celos (To have jealousy)

Issues

- Linguistic Divergences

 - Structural Divergence
 Realization of verb arguments in different syntoctic configurations in different languages
 To enter the house
 Entrar en la casa (Enter in the house)

Issues

- Linguistic Divergences

 - Head-Swapping Divergence
 Inversion of a structural-dominance of To run in
 Entrar corriendo (Enter running) nnce relation between two semantically equivalent words

Issues

- Linguistic Divergences
 Thematic Divergence
 Realization of verb arguments that reflect different thematic to syntactic mapping orders

 - I like grapes
 Me gustan uvas (To-me please grapes)

Direct Transfer

- Translation is word-by-word
- Very little analysis of the source text (e.g., no syntactic or semantic analysis)
- Relies on a large bilingual dictionary. For each word in the source language, the dictionary specifies a set of rules for translating that word.

				CLASSIC SOUPS Sm.	Lo
ታ	燉 鶏	*	57.	House Chicken Soup (Chicken, Celery,	
				Potato, Onion, Carrot)	2.7
雞	飯	*	58.	Chicken Rice Soup 1.85	3.2
雞	麵	*	59.	Chicken Noodle Soup1.85	3.2
麖	東雲	吞	60.	Cantonese Wonton Soup1.50	2.7
풒	茄 蛋	*	61.	Tomato Clear Egg Drop Soup1.65	2.9
雲	呑	*	62.	Regular Wonton Soup1.10	2.1
鹸	辣	*	63. ₹	• Hot & Sour Soup	2.1
Ŧ	花	暑	64.	Egg Drop Soup1.10	2.1
雲	₹	*	65.	Egg Drop Wonton Mix1.10	2.1
豆	鷹 菜	*	66.	Tofu Vegetable SoupNA	3.5
雞	玉 米	害	67.	Chicken Corn Cream SoupNA	3.5
譽	肉玉米	害	68.	Crab Meat Corn Cream SoupNA	3.5
海	蜂	*	69.	Seafood SoupNA	3.5

Direct Transfer

- Morphological Analysis
 Mary didn't slap the green witch. → Mary DO:PAST not slap the green witch.
- Lexical Transfer
 - Mary DO:PAST not slap the green witch.
 - Maria no dar:PAST una bofetada a la verde bruja.
- · Lexical Reordering
 - Maria no dar:PAST una bofetada a la bruja verde
- Morphological generation
 - Maria no dió una bofetada a la bruja verde.

An Example of a set of Direct Translation

Rules for translating much or many into Russian:

 $\textbf{if} \ \mathsf{preceding} \ \mathsf{word} \ \mathsf{is} \ \mathit{how} \ \textbf{return} \ \mathit{skol'ko}$ else if preceding word is as return stol'ko zhe else if word is much

 $if \ \mathsf{preceding} \ \mathsf{word} \ \mathsf{is} \ \mathit{very} \ \mathsf{return} \ \mathsf{nil}$

else if following word is a noun return mnogo

else (word is many)

if preceding word is a preposition and following word is noun return mnogii else return mnogo

Lack of any analysis of the source language causes several problems

• Difficult or impossible to capture long-range reorderings

Sources said that IBM bought Lotus yesterday English: Sources yesterday IBM Lotus bought that said Japanese:

• Words are translated without disambiguation of their syntactic role e.g., that can be a complementizer or determiner, and will often be translated differently for these two cases

They said that ...

They like that ice-cream

Transfer-Based Approaches

- Analysis: Analyze the source language sentence; for example, build a syntactic analysis of the source language sentence.
- Transfer: Convert the source-language parse tree to a target-language parse tree.
- Generation: Convert the target-language parse tree to an output sentence

Syntactic Transfer

- Simple lexical reordering does not adequately handle more dramatic reordering such as that required to translate from an SVO to an SOV
- Need syntactic transfer rules that map parse tree for one language into one for another.
 - · English to Spanish:
 - NP → Adj Nom ⇒ NP → Nom ADJ
 - English to Japanese:
 VP → V NP ⇒ VP → NP V

 - $PP \rightarrow P NP \Rightarrow PP \rightarrow NP P$

Statistical MT

- Manually encoding comprehensive bilingual lexicons and transfer rules is difficult.
- SMT acquires knowledge needed for translation from a parallel corpus or bitext that contains the same set of documents in two languages.
- The Canadian Hansards (parliamentary proceedings in French and English) is a well-known parallel corpus.
- First align the sentences in the corpus based on simple methods that use coarse cues like sentence length to give bilingual sentence pairs.

English	French	P(f e)
	nationale	0.47
ational	national	0.42
	nationaux	0.05
	nationales	0.03
	le	0.50
	la	0.21
the	les	0.16
	ľ	0.09
	се	0.02
	cette	0.01
	agriculteurs	0.44
	les	0.42
farmers	cultivateurs	0.05
	producteurs	0.02

[Brown et al 93]

Picking a Good Translation

- A good translation should be *faithful* and correctly convey the information and tone of the original source sentence.
- A good translation should also be *fluent*, grammatically well structured and readable in the target language.
- Final objective:

 $T_{best} = \underset{\text{Te-Target}}{\operatorname{argmax}} \text{ faithfulness}(T, S) \text{ fluency}(T)$

Noisy Channel Model

 Assume that source sentence was generated by a "noisy" transformation of some target language sentence and then use Bayesian analysis to recover the most likely target sentence that generated it.

Translate foreign language sentence $F=f_1,f_2,\ldots f_m$ to an English sentence $\hat{E}=e_1,e_2,\ldots e_I$ that maximizes $P(E\mid F)$

Bayesian Analysis of Noisy Channel

```
\hat{E} = \underset{E \in English}{\operatorname{argmax}} P(E \mid F)
= \underset{E \in English}{\operatorname{argmax}} \frac{P(F \mid E)P(E)}{P(F)}
= \underset{E \in English}{\operatorname{argmax}} P(F \mid E)P(E)
= \underset{E \in English}{\operatorname{Translation Model}} \text{ Language Model}
```

A decoder determines the most probable translation \hat{E} given F

Translation from Spanish to English, candidate translations based on $p(Spanish \mid English)$ alone:

Que hambre tengo yo

 \rightarrow

 $\begin{array}{lll} \mbox{What hunger have} & p(s|e) = 0.000014 \\ \mbox{Hungry l am so} & p(s|e) = 0.000001 \\ \mbox{l am so hungry} & p(s|e) = 0.0000015 \\ \mbox{Have i that hunger} & p(s|e) = 0.000020 \end{array}$

. . .

With $p(Spanish \mid English) \times p(English)$:

Que hambre tengo yo

 $p(s|e)p(e) = 0.000014 \times 0.000001$ What hunger have $p(s|e)p(e) = 0.000001 \times 0.0000014$ Hungry I am so I am so hungry $p(s|e)p(e) = 0.0000015 \times 0.0001$

Have i that hunger $p(s|e)p(e) = 0.000020 \times 0.00000098$

Evaluating MT

- Human subjective evaluation is the best but is time-consuming and expensive.
- Automated evaluation comparing the output to multiple human reference translations is cheaper and correlates with human judgements.

Human Evaluation of MT

- Ask humans to estimate MT output on several dimensions.
 - Fluency: Is the result grammatical, understandable, and readable in the target
 - Ianguage.

 Fidelity: Does the result correctly convey the information in the original source language.

 Adequacy: Human judgment on a fixed scale.

 Billingual judges given source and target language.

 Monoilingual judges given reference translation and MT result.

 Informativeness: Monoilingual judges must answer questions about the source sentence given only the MT translation (task-based evaluation).

Computer-Aided Translation Evaluation

- Edit cost: Measure the number of changes that a human translator must make to correct the MT output.
 - · Number of words changed
 - Amount of time taken to edit
 - Number of keystrokes needed to edit

Automatic Evaluation of MT

- \bullet Collect one or more human $\it reference\ translations$ of the source.
- Compare MT output to these reference translations.
- Score result based on similarity to the reference translations.

 - NIST • TER
 - METEOR

BLEU

- Determine number of *n*-grams of various sizes that the MT output shares with the reference translations
- Compute a modified precision measure of the *n*-grams in MT result.

BLEU Example

Cand 1: Mary no stap the witch green Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slapthe green witch, Ref 2: Mary did not smack the green witch, Ref 3: Mary did not hit a green sorceress.

Cand 1 Unigram Precision: 5/6

BLEU Example

Cand 1: Mary no slap the witch green. Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch. Ref 3: Mary did not hit a green sorceress.

Cand 1 Bigram Precision: 1/5

BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2: Mary did not given smack to a green witch.

Ref 1: Mary did not shap the green witch.
Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not nit a green sorceress.

Cand 2 Unigram Precision: 7/10

BLEU Example

Cand 1: Mary no slap the witch green. Cand 2: Mary did not give a smack to a green witch

Ref 1: Mary did not slap the green witch.
Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Cand 2 Bigram Precision: 4/9

Modified N-Gram Precision

• Average *n*-gram precision over all *n*-grams up to size *N* (typically 4) using geometric mean.

$$p_n = \frac{\sum_{Cecorpus \ n-prameC}}{\sum_{Cecorpus \ n-prameC}} \sum_{count} (n-gram) \\ p = \sqrt[N]{\prod_{n=1}^{N} p_n}$$

Cand 1:
$$p = \sqrt[2]{\frac{5}{6} \cdot \frac{1}{5}} = 0.408$$

Cand 1:
$$p = \sqrt[3]{\frac{5}{6} \cdot \frac{1}{5}} = 0.408$$

Cand 2: $p = \sqrt[3]{\frac{7}{10} \cdot \frac{4}{9}} = 0.558$

Brevity Penalty

- Not easy to compute recall to complement precision since there are multiple alternative gold-standard references and don't need to match all of them.
- Instead, use a penalty for translations that are shorter than the reference translations.
- Define effective reference length, r, for each sentence as the length of the reference sentence with the largest number of n-gram matches. Let c be the candidate sentence length.

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

BLEU Score

• Final BLEU Score: BLEU = $BP \times p$

Cand 1: Mary no slap the witch green.

Best Ref: Mary did not slap the green witch. $c=6, \ r=7, \ BP=e^{(1-7/6)}=0.846$

$$c = 6$$
, $r = 7$, $BP = e^{(1-7/6)} = 0.846$

 $BLEU = 0.846 \times 0.408 = 0.345$

Cand 2: Mary did not give a smack to a green witch. Best Ref: Mary did not smack the green witch.

$$c = 10, r = 7, BP = 1$$

 $BLEU = 1 \times 0.558 = 0.558$

BLEU Score Issues

- BLEU has been shown to correlate with human evaluation when comparing outputs from different SMT systems.
- However, it is does not correlate with human judgments when comparing SMT systems with manually developed MT (Systran) or MT with human translations.
- Other MT evaluation metrics have been proposed that claim to overcome some of the limitations of BLEU.