CS 6120/CS4120: Natural Language Processing
Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Logistics

- Course webpage:
- http://www.ccs.neu.edu/home/luwang/courses/cs6120 sp2018/cs6120 sp2 018.html
- Office hours (starting next week)
- Manthan Thakar (TA), Mondays: 1:00-2:00 pm, WVH 462
- Lu Wang (instructor), Tuesdays: 5:15pm to 6:15pm, or by appointment, WVH 258
- Tirthraj Maheshkumar Parmar (TA), Wednesdays: 4:00-5:00 pm WVH 462

Liwen Hou (TA), Fridays: 2:00-3:00 pm WVH 462 (starting 1/26/2017)

- Piazza
- http://piazza.com/northeastern/sp2018/cs6120/home

All course relevant questions should go here - also is the best way to reach the instructor and TAs!

Project Proposal

- Length: 1 page (or more if necessary).

Single space if MS word is used. Or you can choose latex templates, e.g.
htps.//www.acm.org/publications/proceedings-template or http://icml.cc//2015/?page id=151.
introduction: the problem has to be well-defined. What are the input and output. Why this
is an important problem to study.

- Related work: put your work in context. Describe what has been done in previous work on
the same or related subject. And why what you propose to do here is novel and different

Datas: what do propose to do here is novel and differe
contained? Why is it suitable for your task?
Sample proposal and reports

- www.ccs.neu.edu/home/luwang/courses/cs6120 sp2018/cs6120 sp 2018.html
- Sample projects from Stanford NLP course
- http://web.stanford.edu/class/cs224n/reports.html
- Finding teammates on Piazza
- Methodology (optional): what models do you want to use? You may change the model as the project goes, but you may want to indicate some type of models that might be suitable you start with? Are you making improvements? You don't have to be crystal clear on this section, but it can be used to indicate the direction that your project goes to.
- Evaluation: what metrics do you want to use for evaluating your models?

Outline

- Probabilistic language model and n-grams

Probabilistic Language Models

- Assign a probability to a sentence
- Machine Translation:
- P (high winds tonight) $>P$ (large winds tonight $)$
-Spell Correction
- The office is about fifteen minuets from my house - P(about fifteen minutes from) > P(about fifteen minuets from)
-Speech Recognition
- P(I saw a van) >> P(eyes awe of an)
-Text Generation in general:
- Summarization, question-answering ...

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words: $P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)$
- Related task: probability of an upcoming word: $P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$
- A model that computes either of these: $\mathrm{P}(\mathrm{W})$ or $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}-1}\right) \quad$ is called a language model.
Better: the grammar

How to compute P(W)

- How to compute this joint probability:
- P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability
- But language model (or LM) is standard

Quick Review: Probability

- Recall the definition of conditional probabilities $\mathbf{p}(\mathbf{B} \mid \mathrm{A})=\mathbf{P}(\mathbf{A}, \mathrm{B}) / \mathbf{P}(\mathbf{A}) \quad$ Rewriting: $\mathbf{P}(\mathbf{A}, \mathrm{B})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B} \mid \mathrm{A})$
- More variables:
$P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)$
- The Chain Rule in General
$P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)$

The Chain Rule applied to compute joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

The Chain Rule applied to compute joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

$P($ "its water is so transparent") $=$
$P($ its $) \times P($ water \mid its $) \times P($ is \mid its water $)$

$$
\times \mathrm{P}(\text { so } \mid \text { its water is }) \times \mathrm{P}(\text { transparent } \mid \text { its water is }
$$

so)

How to estimate these probabilities

- Could we just count and divide?
$P($ the lits water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)

How to estimate these probabilities

- Could we just count and divide?
$P($ the lits water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

-Simplifying assumption:
$P($ the lits water is so transparent that $) \approx P($ the lthat $)$

- Or maybe
$P($ the lits water is so transparent that $) \approx P($ the $\operatorname{ltransparent~that~})$

Markov Assumption

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

- In other words, we approximate each component in the product

$$
P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

Bigram model

- Condition on the previous word:

$P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)$
texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen
outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

N -gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
- because language has long-distance dependencies:
"The computer(s) which I had just put into the machine room on the fifth floor is (are) crashing."
- But we can often get away with N -gram models

Today's Outline

- Probabilistic language model and n-grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LMs
- Smoothing: Kneser-Ney Smoothing

Estimating bigram probabilities

- The Maximum Likelihood Estimate for bigram probability

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
\end{gathered}
$$

$$
\begin{array}{cl}
\text { An example } & \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)} & \begin{array}{l}
\text { <s> I am Sam </s }> \\
\text { <s Sam I am }</ \mathrm{s}\rangle \\
\text { <s }\rangle \text { I do not like green eggs and ham }</ \mathrm{s}\rangle
\end{array} \\
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}>\mid \operatorname{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
\end{array}
$$

More examples:
Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

- Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

- Normalize by unigrams.
- Result

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities
$\mathrm{P}(<s>\mid$ want english food $</ s>)=$
$\mathrm{P}(1 \mid<s>)$
$\times \mathrm{P}$ (want|I)
$\times \mathrm{P}$ (english|want)
$\times \mathrm{P}$ (food|english)
$\times \mathrm{P}(</ \mathrm{s}>\mid$ food $)$
$=.000031$

Knowledge
\bullet - P(english|want) $=.0011$
$\bullet P($ chinese \mid want $)=.0065$
$\bullet P($ to \mid want $)=.66$

- $P($ eat \mid to $)=.28$
- P (food | to) = 0
- $P($ want \mid spend $)=0$
- $P(i \mid\langle s\rangle)=.25$

Practical Issues

- We do everything in log space
- Avoid underflow
- (also adding is faster than multiplying)
$\log \left(p_{1} \times p_{2} \times p_{3} \times p_{4}\right)=\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}$

Google N-Gram Release, August 2006

Auc All Our N -gram are Belong to You
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team
Here at Google Research we have been using word n-gram models for a variety of R\&D projects,

That's why we decided to share this enormous dataset with everyone. We processed $1,024,908,267,229$ words of running text and are publishing the counts for all $1,176,470,663$ five-word sequences that appear at least 40 times. There are $13,588,391$ unique words, after discarding words that appear less than 200 times,

Today's Outline

- Probabilistic language model and n-grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LMs
- Smoothing: Kneser-Ney Smoothing

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
- Assign higher probability to "real" or "frequently observed" sentences - Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen
- A test set is an unseen dataset that is different from our training set, totally unused.
An evaluation metric tells us how well our model does on the test set.

Training on the test set

- We can't allow test sentences into the training set
- We will assign it an artificially high probability when we set it in the test set
- "Training on the test set"
- Bad science!
- And violates the honor code

Extrinsic evaluation of N -gram models

- Best evaluation for comparing models A and B - Put each model in a task
- spelling corrector, speech recognizer, MT system
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly
- How many words translated correctly
- Compare accuracy for A and B

Difficulty of extrinsic evaluation of N -gram models

- Extrinsic evaluation
- Time-consuming; can take days or weeks - So
- Sometimes use intrinsic evaluation: perplexity

Difficulty of extrinsic evaluation of N -gram models

- Extrinsic evaluation
- Time-consuming; can take days or weeks
- So
- Sometimes use intrinsic evaluation: perplexity
- Bad approximation
- unless the test data looks just like the training data
- So generally only useful in pilot experiments
- But is helpful to think about.

Intuition of Perplexity

-The Shannon Game:

- How well can we predict the next word?
I always order pizza with cheese and -_
The 33rd President of the US was -_
I saw a -_
- Unigrams are terrible at this game. (Why?) $\quad\left\{\begin{array}{l}\text { mushrooms } 0.1 \\ \text { pepperoni } 0.1 \\ \text { anchovies } 0.01 \\ \ldots . \\ \text { fried rice } 0.0001 \\ \ldots . \\ \text { and 1e-100 }\end{array}\right.$
- A better model of a text
- is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$
\begin{aligned}
P P(W) & =P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}} \\
& =\sqrt[N]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right)}}
\end{aligned}
$$

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

Chain rule:

For bigrams:

Chain rule:	$\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}$
For bigrams:	
Minimizing perplexity is the same as maximizing probability	

Minimizing perplexity is the same as maximizing probability

Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign $P=1 / 10$ to each digit?
$\operatorname{PP}(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}$
$=\left(\frac{1}{10}^{N}\right)^{-\frac{1}{N}}$
$=\frac{1}{10}^{-1}$
-10

Lower perplexity $=$ better model

- Training 38 million words, test 1.5 million words, WSJ

| N-gram
 Order | Unigram | Bigram |
| :--- | :--- | :--- | Trigram

Today's Outline

- Probabilistic language model and n-grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LMs
- Smoothing: Kneser-Ney Smoothing

The perils of overfitting

- N -grams only work well for word prediction if the test corpus looks like the training corpus
- In real life, it often doesn't
-We need to train robust models that generalize!
- One kind of generalization: Zeros!
-Things that don't ever occur in the training set - But occur in the test set

The perils of overfitting

- N -grams only work well for word prediction if the test corpus looks like the training corpus
- In real life, it often doesn't
-We need to train robust models that generalize!

Zeros

In training set, we see
... denied the allegations
... denied the reports
,
... denied the offer
... denied the claims ... denied the loan
... denied the request
$P($ "offer" | denied the) $=0$

Zero probability bigrams

- Bigrams with zero probability
- mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can't divide by 0)!

Today's Outline

- Probabilistic language model and n -grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LMs
- Smoothing: Kneser-Ney Smoothing

The intuition of smoothing (from Dan Klein)

- When we have sparse statistics:
$\mathrm{P}(\mathrm{w} \mid$ denied the)
3 allegations
2 reports
1 claims
1 request
7 total
- Steal probability mass to generalize better $P(w \mid$ denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request

2 other
7 total

Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!
- MLE estimate:

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- Add-1 estimate:

$$
P_{\text {Add-1 }}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V_{\text {Why add V? }}}
$$

Laplace-smoothed bigrams
smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

$$
P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Add-1 estimation is a blunt instrument

- So add-1 isn't used for N-grams:
- We'll see better methods
- (nowadays, neural LM becomes popular, will discuss in semantic lecture)
- But add-1 is used to smooth other NLP models
- For text classification (coming soon!)
- In domains where the number of zeros isn't so huge.

Today's Outline

- Probabilistic language model and n-grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LM
- Smoothing: Kneser-Ney Smoothing

Backoff and Interpolation

- Sometimes it helps to use less context
- Condition on less context for contexts you haven't learned much about
- Backoff:
use trigram if you have good evidence
- otherwise bigram
- otherwise unigram
- Interpolation
- mix unigram, bigram, trigram
- In general, interpolation works better

Linear Interpolation

-Simple interpolation

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

- Lambdas conditional on context:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

How to set the lambdas?

- Use a held-out corpus

- Fix the N -gram probabilities (on the training data)
- Then search for λs that give largest probability to held-out set:

$$
\log P\left(w_{1} \ldots w_{n} \mid M\left(\lambda_{1} \ldots \lambda_{k}\right)\right)=\sum_{i} \log P_{M\left(\lambda_{1} \ldots \lambda_{k}\right)}\left(w_{i} \mid w_{i-1}\right)
$$

A Common Method - Grid Search

- Take a list of possible values, e.g. [0.1, 0.2, ... ,0.9]
- Try all combinations

Unknown words: Open versus closed vocabulary tasks

- If we know all the words in advanced
- Vocabulary V is fixed
- Closed vocabulary task
- Often we don't know this
- Out Of Vocabulary = OOV words
- Open vocabulary task

Unknown words: Open versus closed vocabulary tasks

- If we know all the words in advanced
- Vocabulary V is fixed
- Closed vocabulary task
- Often we don't know this
- Out Of Vocabulary = OOV words
- Open vocabulary task
- Instead: create an unknown word token <UNK>
- Training of <UNK> probabilities
- Create a fixed lexicon L of size V (e.g. selecting high frequency words)
- At text normalization phase, any training word not in L changed to <UNK>
- Now we train its probabilities like a normal word
- At test time
- If text input: Use UNK probabilities for any word not in training

Smoothing for Web-scale N-grams

-"Stupid backoff" (Brants et al. 2007)

- No discounting, just use relative frequencies

$$
\begin{aligned}
& S\left(w_{i} \mid w_{i-k+1}^{i-1}\right)=\left\{\begin{array}{c}
\frac{\operatorname{count}\left(w_{i-k+1}^{i}\right)}{\operatorname{count}\left(w_{i-k+1}^{i-1}\right)} \text { if } \operatorname{count}\left(w_{i-k+1}^{i}\right)>0 \\
0.4 S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) \quad \text { otherwise }
\end{array}\right. \\
& S\left(w_{i}\right)=\frac{\operatorname{count}\left(w_{i}\right)}{N} \text { Until unigram probability }
\end{aligned}
$$

Today's Outline

- Probabilistic language model and n-grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LMs
- Smoothing: Kneser-Ney Smoothing

Absolute discounting: just subtract a little from each count

- Suppose we wanted to subtract a little from a count of 4 to save probability mass for the zeros
- How much to subtract ?
- Church and Gale (1991)'s clever idea
- Divide up 22 million words of AP Newswire - Training and held-out set
- for each bigram in the training set
- see the actual count in the held-out set
- It sure looks like c* $=(\mathrm{c}$ - .75)

| Bigram count | Bigram count in |
| :--- | :--- | in training heldout set | in training | heldout |
| :--- | :--- |
| 0 | 0000270 |

0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

Absolute Discounting Interpolation

[^0]
Kneser-Ney Smoothing I

- Better estimate for probabilities of lower-order unigrams!
- Shannon game: I can't see without my reading__ ? glasses
- "Francisco" is more common than "glasses"
\qquad Francisco
- ... but "Francisco" always follows "San"
- The unigram is useful exactly when we haven't seen this bigram! - Instead of $P(w)$: "How likely is w "
- $\mathrm{P}_{\text {continuation }}(\mathrm{w})$: "How likely is w to appear as a novel continuation?
- For each word, count the number of bigram types it completes
- Every bigram type was a novel continuation the first time it was seen

$$
P_{\text {Continuation }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Kneser-Ney Smoothing III

- Alternative metaphor: The number of \# of word types seen to precede w

$$
\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

- normalized by the \# of words preceding all words:

$$
P_{\text {Continuation }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\sum_{w^{\prime}}\left|\left\{w_{i-1}^{\prime}: c\left(w_{i-1}^{\prime}, w^{\prime}\right)>0\right\}\right|}
$$

- A frequent word (Francisco) occurring in only one context (San) will have a low continuation probability

Kneser-Ney Smoothing IV

$P_{K N}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(c\left(w_{i-1}, w_{i}\right)-d, 0\right)}{c\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) P_{\text {CONTINUATION }}\left(w_{i}\right)$
λ is a normalizing constant; the probability mass we've discounted

Language Modeling

- Probabilistic language model and n-grams
- Estimating n-gram probabilities
- Language model evaluation and perplexity
- Generalization and zeros
- Smoothing: add-one
- Interpolation, backoff, and web-scale LMs
- Smoothing: Kneser-Ney Smoothing

Continuation count $=$ Number of unique single word contexts for $\boldsymbol{~}$

Kneser-Ney Smoothing II

- How many times does w appear as a novel continuation (unique bigram types):
$P_{\text {Continuation }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|$
- Normalized by the total number of word bigram types

$$
\begin{gathered}
\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right| \\
P_{\text {CONTINUATION }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|}
\end{gathered}
$$

Kneser-Ney Smoothing: Recursive formulation
$P_{K N}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c_{K N}\left(w_{i-n+1}^{i}\right)-d, 0\right)}{c_{K N}\left(w_{i-n+1}^{i-1}\right)}+\lambda\left(w_{i-n+1}^{i-1}\right) P_{K N}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)$
$c_{K N}(\bullet)=\left\{\begin{array}{c}\operatorname{count}(\bullet) \text { for the highest order } \\ \operatorname{continuationcount}(\bullet) \text { for lower order }\end{array}\right.$

Homework

- Reading J\&M ch1 and ch4.1-4.9
- Start thinking about course project and find a team
- Project proposal due Jan 30

[^0]: - Save ourselves some time and just subtract 0.75 (or some d)!
 $P_{\text {AbsoluteDiscounting }}\left(w_{i} \mid w_{i-1}^{\text {discounted bigram }}\right)=\frac{c\left(w_{i-1}, w_{i}\right)-d}{c\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) P(w)$
 - But should we really just use the regular unigram $\mathrm{P}(\mathrm{w})$?

