

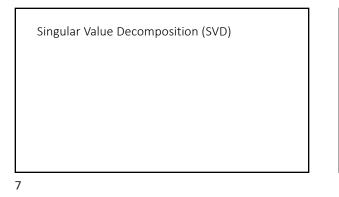
Sparse versus dense vectors

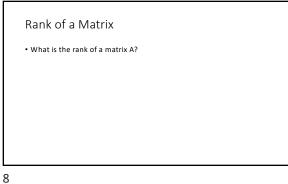
· Why dense vectors?

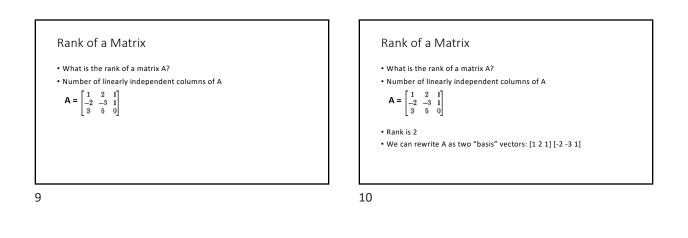
- Short vectors may be easier to use as features in machine learning (less weights to tune)
- Dense vectors may generalize better than storing explicit counts • They may do better at capturing synonymy:
- car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

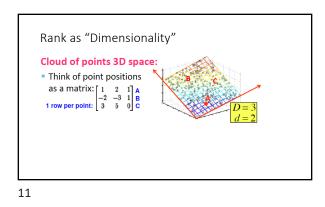
Two methods for getting short dense vectors

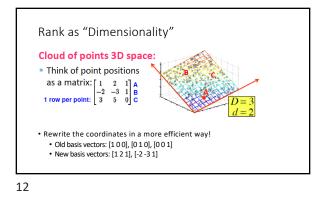
- Singular Value Decomposition (SVD)
- "Neural Language Model" inspired by predictive models

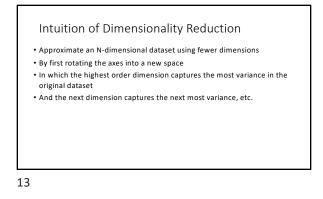


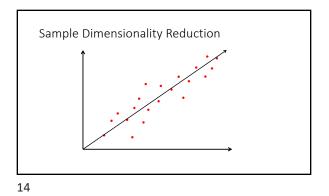


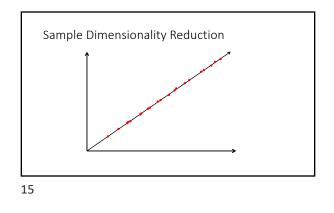


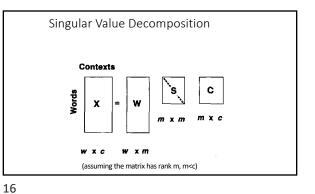


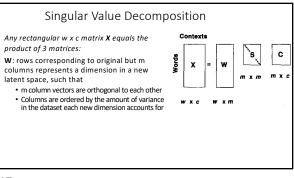


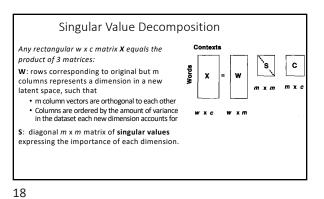


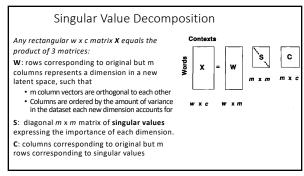


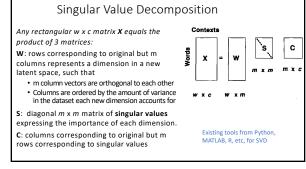


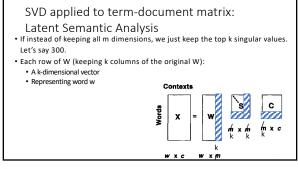




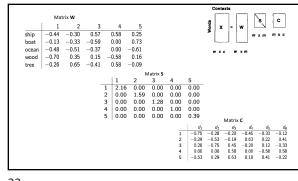


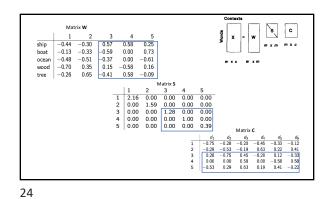


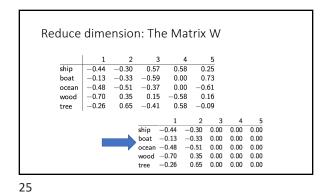


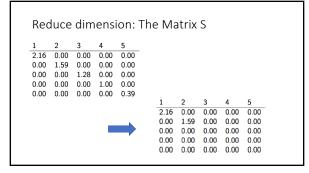


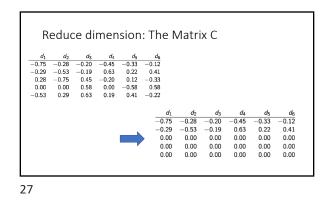
The matrix X						
	d_1	d_2	d ₃	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

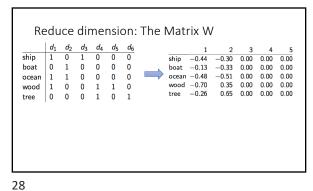


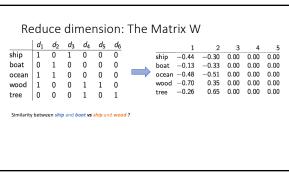




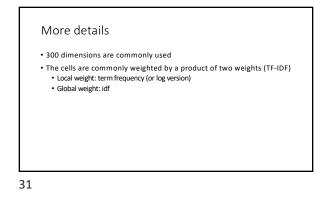




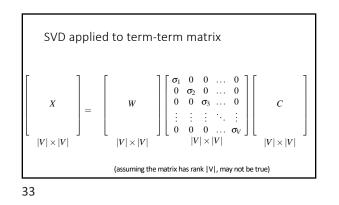


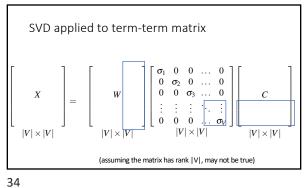


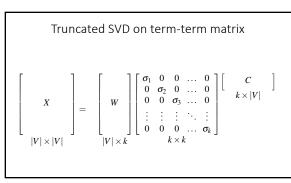
ship	1 d1	d ₂	1 1	d ₄	0 0	<u>d</u> 6 0		1	2	3	4	5
		-	-				ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0	boat	-0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0		-0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0	wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1	tree	-0.26	0.65	0.00	0.00	0.00

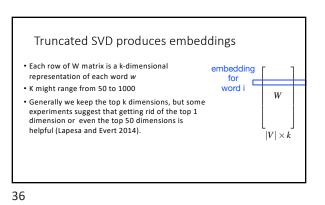


Let's return to PPMI word-word matrices
• Can we apply SVD to them?









Embeddings versus sparse vectors

- Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 - Denoising: low-order dimensions may represent unimportant information
 - Truncation may help the models generalize better to unseen data.
 - Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 - Dense models may do better at capturing higher order cooccurrence.