CS4120: Natural Language Processing

Instructor: Prof. Lu Wang

Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Outline

- Vector Semantics
- Sparse representation
 - Pointwise Mutual Information (PMI)
- Dense representation
 - Singular Value Decomposition (SVD)
 - Neural Language Model

Sparse versus dense vectors

- PPMI vectors are
 - **long** (length |V| = 20,000 to 50,000)
 - sparse (most elements are zero)

Sparse versus dense vectors

- PPMI vectors are
 - **long** (length |V| = 20,000 to 50,000)
 - sparse (most elements are zero)
- Alternative: learn vectors which are
 - **short** (length 200-1000)
 - dense (most elements are non-zero)

Sparse versus dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Two methods for getting short dense vectors

Singular Value Decomposition (SVD)

"Neural Language Model" – inspired by predictive models

Rank of a Matrix

• What is the rank of a matrix A?

Rank of a Matrix

- What is the rank of a matrix A?
- Number of linearly independent columns of A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

Rank of a Matrix

- What is the rank of a matrix A?
- Number of linearly independent columns of A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

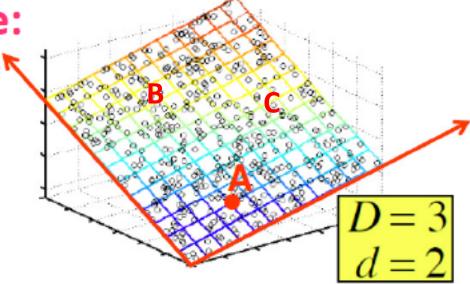
- Rank is 2
- We can rewrite A as two "basis" vectors: [1 2 1] [-2 -3 1]

Rank as "Dimensionality"

Cloud of points 3D space:

■ Think of point positions as a matrix: [1 2 1] △

as a matrix: $\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \overset{\text{A}}{\text{C}}$

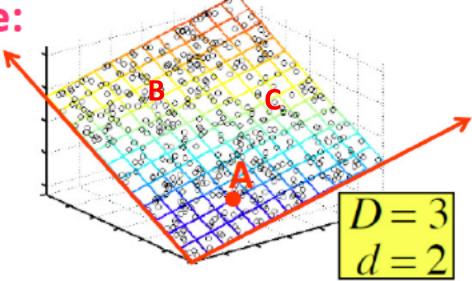


Rank as "Dimensionality"

Cloud of points 3D space:

■ Think of point positions as a matrix: [1 2 1] A

as a matrix: $\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \overset{\text{A}}{\text{C}}$

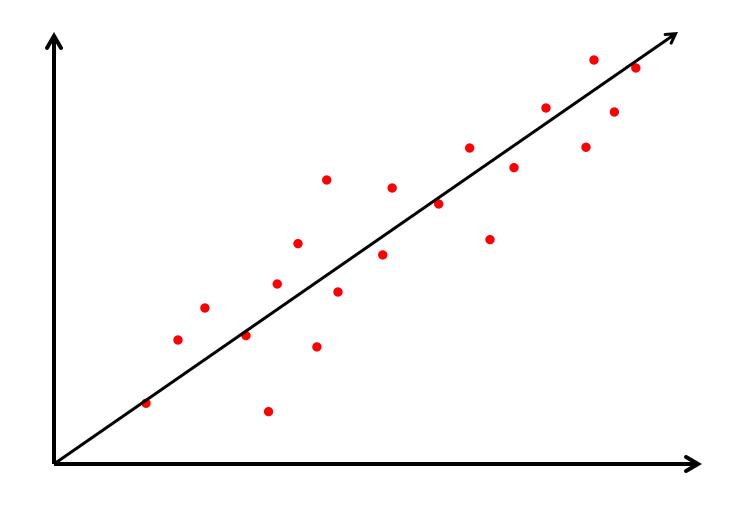


- Rewrite the coordinates in a more efficient way!
 - Old basis vectors: [1 0 0], [0 1 0], [0 0 1]
 - New basis vectors: [1 2 1], [-2 -3 1]

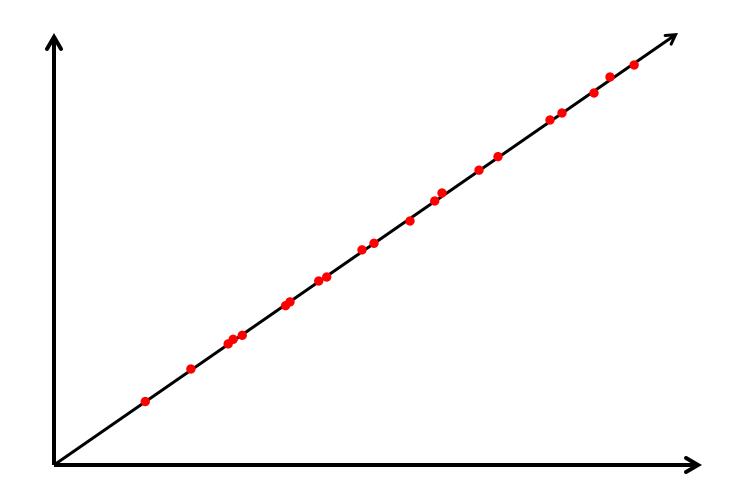
Intuition of Dimensionality Reduction

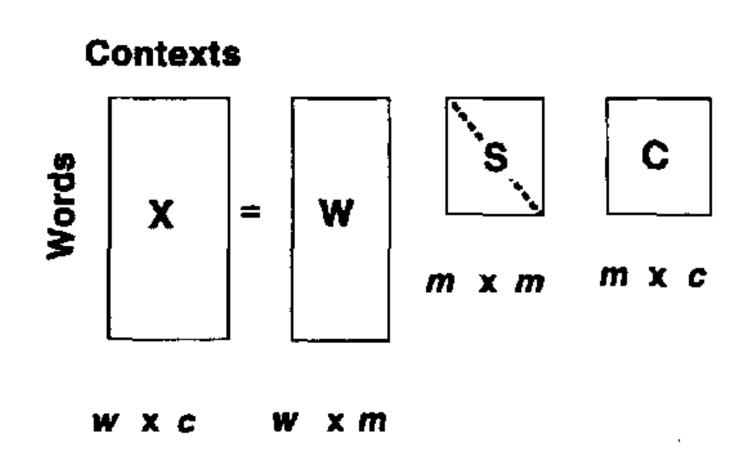
- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.

Sample Dimensionality Reduction



Sample Dimensionality Reduction



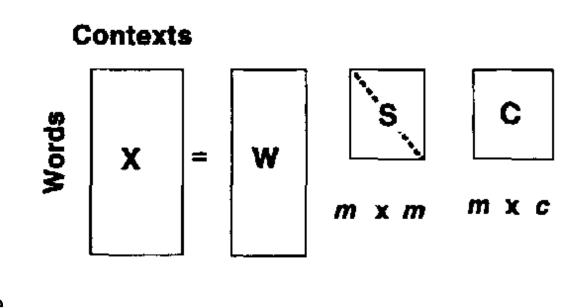


(assuming the matrix has rank m, m<c)

Any rectangular w x c matrix **X** equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

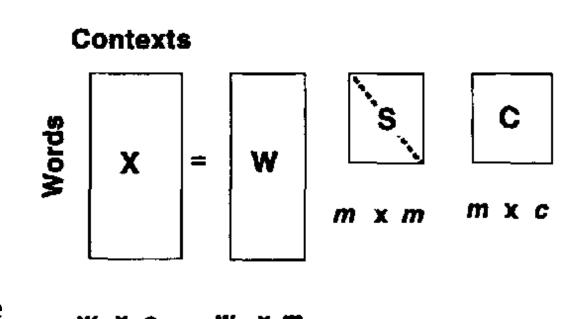


Any rectangular w x c matrix **X** equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

S: diagonal *m* x *m* matrix of **singular values** expressing the importance of each dimension.



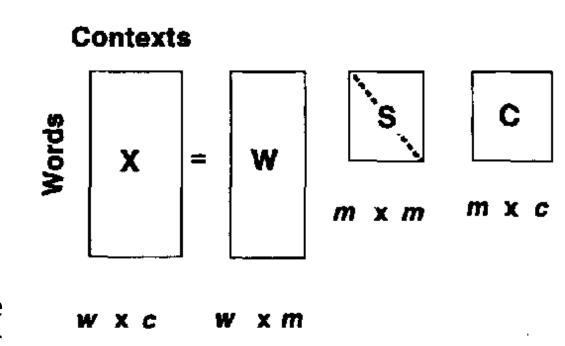
Any rectangular w x c matrix **X** equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

S: diagonal *m* x *m* matrix of **singular values** expressing the importance of each dimension.

C: columns corresponding to original but m rows corresponding to singular values



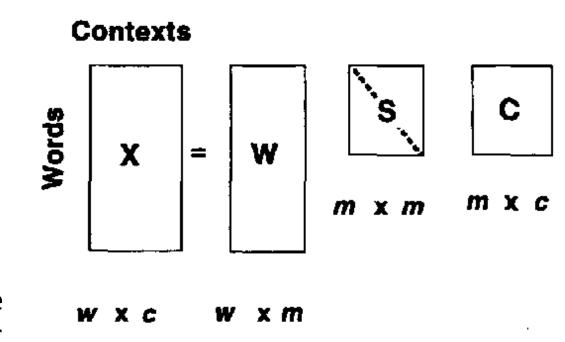
Any rectangular w x c matrix **X** equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

S: diagonal *m* x *m* matrix of **singular values** expressing the importance of each dimension.

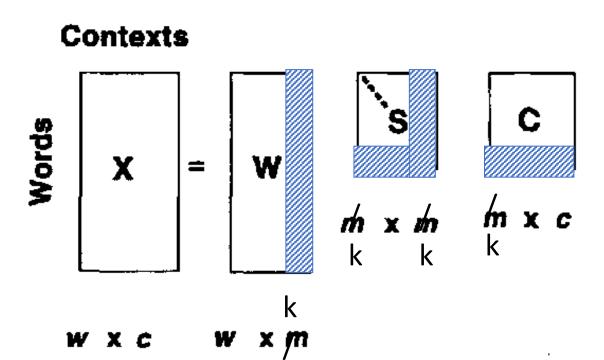
C: columns corresponding to original but m rows corresponding to singular values



Existing tools from Python, MATLAB, R, etc, for SVD

SVD applied to term-document matrix: Latent Semantic Analysis

- If instead of keeping all m dimensions, we just keep the top k singular values. Let's say 300.
- Each row of W (keeping k columns of the original W):
 - A k-dimensional vector
 - Representing word w



SVD on Term-Document Matrix: Example

• The matrix X

	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

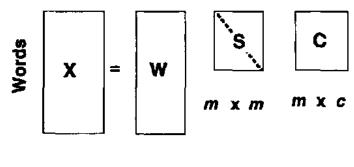
Matrix **W**

	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

Matrix **S**

		2			
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00 1.59 0.00 0.00 0.00	0.00	0.00	0.39

Contexts



wxc wxm

Matrix **C**

	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

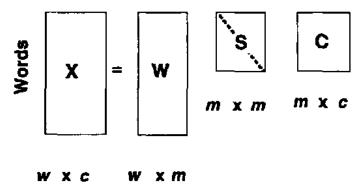
Matrix **W**

	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

Matrix **S**

	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	0.00 1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00 0.00 0.00	0.00	0.00	0.39

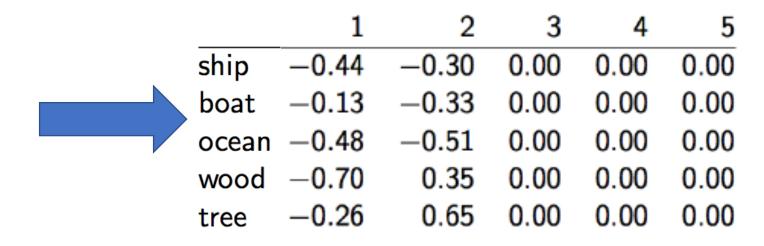
Contexts



Matrix **C**

	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00				0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

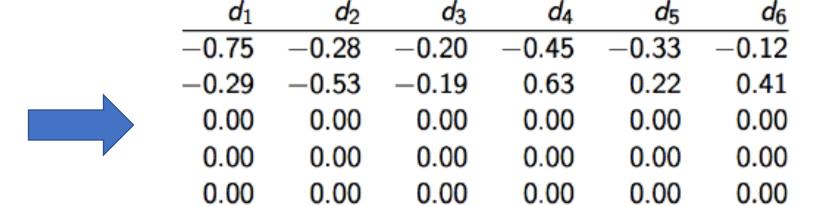
	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09



1	2	3	4	5
2.16	0.00	0.00	0.00	0.00
0.00	1.59	0.00	0.00	0.00
0.00	0.00	1.28	0.00	0.00
0.00	0.00	0.00	1.00	0.00
0.00	0.00	0.00	0.00	0.39

1	2	3	4	5
2.16	0.00	0.00	0.00	0.00
0.00	1.59	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00

d_1	d_2	d_3	d_4	d_5	d_6
-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
-0.29	-0.53	-0.19	0.63	0.22	0.41
0.28	-0.75	0.45	-0.20	0.12	-0.33
0.00	0.00	0.58	0.00	-0.58	0.58
-0.53	0.29	0.63	0.19	0.41	-0.22



	d_1	d_2	d_3	d_4	d_5	d_6			1	2	3	4	5
ship	1	0	1	0	0	0		 ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0		boat	-0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0		ocean	-0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0				0.35			
tree	0	0	0	1	0	1	,	tree	-0.26	0.65	0.00	0.00	0.00

	d_1	d_2	d_3	d_4	d_5	d_6		1	2	3	4	5
ship	1	0	1	0	0	0	ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0	boa	t -0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0	oce	an -0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0	woo	od -0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1	tree	-0.26	0.65	0.00	0.00	0.00

Similarity between *ship* and *boat vs ship* and *wood*?

	d_1	d_2	d_3	d_4	d_5	d_6			1	2	3	4	5
ship	1	0	1	0	0	0	!	ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0		-		-0.33			
ocean	1	1	0	0	0	0				-0.51			
wood	1	0	0	1	1	0	,	wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1	•	tree	-0.26	0.65	0.00	0.00	0.00

More details

- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF)
 - Local weight: term frequency (or log version)
 - Global weight: idf

Let's return to PPMI word-word matrices

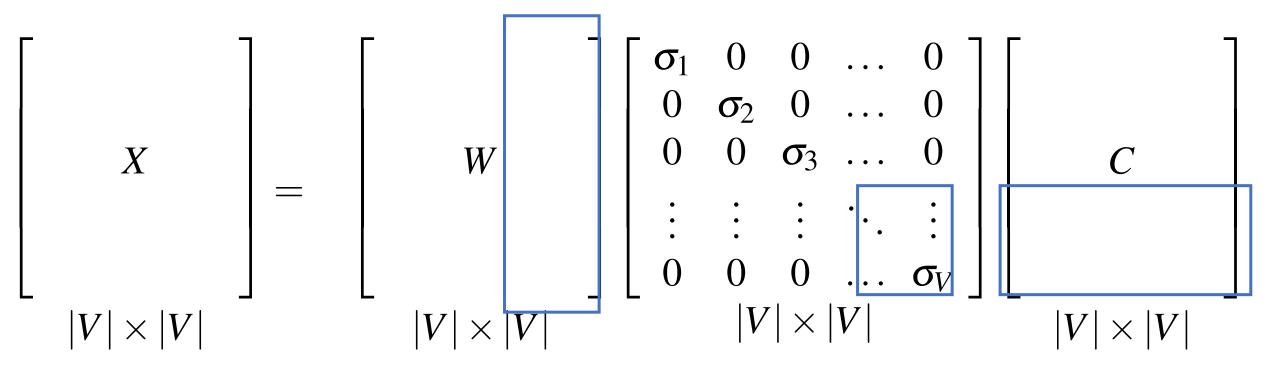
Can we apply SVD to them?

SVD applied to term-term matrix

$$\begin{bmatrix} X \\ V \end{bmatrix} = \begin{bmatrix} W \\ W \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_V \end{bmatrix} \begin{bmatrix} C \\ V | \times |V| & |V| \times |V| & |V| \times |V| \end{bmatrix}$$

(assuming the matrix has rank |V|, may not be true)

SVD applied to term-term matrix



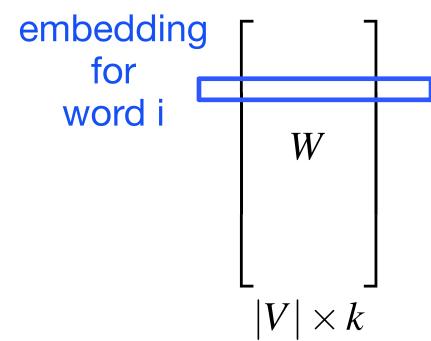
(assuming the matrix has rank |V|, may not be true)

Truncated SVD on term-term matrix

$$\begin{bmatrix} X \\ V \end{bmatrix} = \begin{bmatrix} W \\ W \\ V \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{bmatrix} \begin{bmatrix} C \\ k \times |V| \end{bmatrix}$$

Truncated SVD produces embeddings

- Each row of W matrix is a k-dimensional representation of each word w
- K might range from 50 to 1000
- Generally we keep the top k dimensions, but some experiments suggest that getting rid of the top 1 dimension or even the top 50 dimensions is helpful (Lapesa and Evert 2014).



Embeddings versus sparse vectors

- Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 - Denoising: low-order dimensions may represent unimportant information
 - Truncation may help the models generalize better to unseen data.
 - Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 - Dense models may do better at capturing higher order cooccurrence.